双对象

C. Heunen, J. Vicary
{"title":"双对象","authors":"C. Heunen, J. Vicary","doi":"10.1093/oso/9780198739623.003.0003","DOIUrl":null,"url":null,"abstract":"Dual objects are abstract categorical structures that represent the quantum notion of entanglement. We prove a range of important results about dual objects and show how to use them to model quantum teleportation. Dual objects have an important topological representation, in terms of wires bending ‘backwards in time’, and we use this to characterize different sorts of duality structures, including pivotal, ribbon and compact structures. Dual objects interact well with any linear structure available, allowing us to capture linear-algebraic properties such as trace and dimension.","PeriodicalId":314153,"journal":{"name":"Categories for Quantum Theory","volume":"76 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Objects\",\"authors\":\"C. Heunen, J. Vicary\",\"doi\":\"10.1093/oso/9780198739623.003.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dual objects are abstract categorical structures that represent the quantum notion of entanglement. We prove a range of important results about dual objects and show how to use them to model quantum teleportation. Dual objects have an important topological representation, in terms of wires bending ‘backwards in time’, and we use this to characterize different sorts of duality structures, including pivotal, ribbon and compact structures. Dual objects interact well with any linear structure available, allowing us to capture linear-algebraic properties such as trace and dimension.\",\"PeriodicalId\":314153,\"journal\":{\"name\":\"Categories for Quantum Theory\",\"volume\":\"76 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Categories for Quantum Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198739623.003.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Categories for Quantum Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198739623.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对偶物体是抽象的范畴结构,代表了量子纠缠的概念。我们证明了一系列关于对偶物体的重要结果,并展示了如何使用它们来模拟量子隐形传态。对偶物体有一个重要的拓扑表示,就导线在“时间上向后”弯曲而言,我们用它来表征不同类型的对偶结构,包括枢纽结构、带状结构和紧凑结构。对偶对象与任何可用的线性结构都能很好地交互,使我们能够捕获线性代数属性,如轨迹和维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual Objects
Dual objects are abstract categorical structures that represent the quantum notion of entanglement. We prove a range of important results about dual objects and show how to use them to model quantum teleportation. Dual objects have an important topological representation, in terms of wires bending ‘backwards in time’, and we use this to characterize different sorts of duality structures, including pivotal, ribbon and compact structures. Dual objects interact well with any linear structure available, allowing us to capture linear-algebraic properties such as trace and dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信