纳米复合材料在能源应用中的数值研究

S. Kosti
{"title":"纳米复合材料在能源应用中的数值研究","authors":"S. Kosti","doi":"10.4018/978-1-7998-1530-3.ch001","DOIUrl":null,"url":null,"abstract":"Nanocomposites are defined as a combination of nanoparticles reinforced into the base material. They are of very small sizes (1nm = 10-9m) and possesses higher thermal properties. They are widely utilized in different applications, like in energy, construction, biomedical, chemical, electronics, agriculture, cosmetics, etc. This chapter deals with the application of nanocomposites (SiC/Al2O3/B4C/TiO2/ZnO/SiO2) in the field of energy applications by analyzing their properties (thermal-conductivity/density/specific-heat) using numerical models. The effect of nanoparticles reinforced wt. % concentration into a base material (Al6061/Al7075/H2O) is also analyzed. Results show that nanocomposites have higher effective thermal conductivity and are suitable for high heat-releasing energy devices. It is found that the addition of nanoparticles increases the surface area to volume ratio, which further increases the energy transfer rate. Results show that nanocomposites with lower effective density are suitable when there is a requirement of reduction in weight for the same heat release application.","PeriodicalId":145165,"journal":{"name":"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study of Nanocomposites for Energy Applications\",\"authors\":\"S. Kosti\",\"doi\":\"10.4018/978-1-7998-1530-3.ch001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanocomposites are defined as a combination of nanoparticles reinforced into the base material. They are of very small sizes (1nm = 10-9m) and possesses higher thermal properties. They are widely utilized in different applications, like in energy, construction, biomedical, chemical, electronics, agriculture, cosmetics, etc. This chapter deals with the application of nanocomposites (SiC/Al2O3/B4C/TiO2/ZnO/SiO2) in the field of energy applications by analyzing their properties (thermal-conductivity/density/specific-heat) using numerical models. The effect of nanoparticles reinforced wt. % concentration into a base material (Al6061/Al7075/H2O) is also analyzed. Results show that nanocomposites have higher effective thermal conductivity and are suitable for high heat-releasing energy devices. It is found that the addition of nanoparticles increases the surface area to volume ratio, which further increases the energy transfer rate. Results show that nanocomposites with lower effective density are suitable when there is a requirement of reduction in weight for the same heat release application.\",\"PeriodicalId\":145165,\"journal\":{\"name\":\"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-1530-3.ch001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-1530-3.ch001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米复合材料被定义为在基材中增强纳米颗粒的组合。它们的尺寸非常小(1nm = 10-9m),并且具有较高的热性能。广泛应用于能源、建筑、生物医药、化工、电子、农业、化妆品等领域。本章通过数值模型分析纳米复合材料(SiC/Al2O3/B4C/TiO2/ZnO/SiO2)的性能(导热系数/密度/比热),讨论纳米复合材料在能源应用领域的应用。并分析了wt. %浓度增强纳米颗粒对基材(Al6061/Al7075/H2O)的影响。结果表明,纳米复合材料具有较高的有效导热系数,适用于高放热能器件。研究发现,纳米颗粒的加入增加了材料的表面积体积比,从而进一步提高了材料的能量传递速率。结果表明,在相同的放热应用条件下,采用较低的有效密度的纳米复合材料是合适的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Study of Nanocomposites for Energy Applications
Nanocomposites are defined as a combination of nanoparticles reinforced into the base material. They are of very small sizes (1nm = 10-9m) and possesses higher thermal properties. They are widely utilized in different applications, like in energy, construction, biomedical, chemical, electronics, agriculture, cosmetics, etc. This chapter deals with the application of nanocomposites (SiC/Al2O3/B4C/TiO2/ZnO/SiO2) in the field of energy applications by analyzing their properties (thermal-conductivity/density/specific-heat) using numerical models. The effect of nanoparticles reinforced wt. % concentration into a base material (Al6061/Al7075/H2O) is also analyzed. Results show that nanocomposites have higher effective thermal conductivity and are suitable for high heat-releasing energy devices. It is found that the addition of nanoparticles increases the surface area to volume ratio, which further increases the energy transfer rate. Results show that nanocomposites with lower effective density are suitable when there is a requirement of reduction in weight for the same heat release application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信