基于车辆自组织网络的预测道路交通管理系统

N. Nafi, Reduan H. Khan, J. Khan, M. Gregory
{"title":"基于车辆自组织网络的预测道路交通管理系统","authors":"N. Nafi, Reduan H. Khan, J. Khan, M. Gregory","doi":"10.1109/ATNAC.2014.7020887","DOIUrl":null,"url":null,"abstract":"With an increasing number of vehicles on the road, demand for intelligent transportation systems is on the rise. In this paper, we present a predictive road traffic management system (PRTMS) based on the Vehicular Ad-hoc Network (VANET) architecture. The proposed PRTMS uses a novel communications scheme to estimate the future traffic intensities at different intersections based on a modified linear prediction algorithm. Based on the prediction, a central controller reduces the congestion level by re-routing the vehicles and adaptively changing the signaling cycles. An IEEE 802.11p based vehicle to-infrastructure communications system is used to collect trip information and transmit control signals to enforce multi-junction traffic flow control. Simulations are conducted using an integrated OPNET model comprised of road infrastructure, vehicular mobility management and communications networking to jointly examine the performances of the proposed PRTMS and the VANET. The results indicate that the proposed scheme provides a significant performance improvement in terms of total journey time and waiting time of the vehicles. In addition, the performance of the prediction algorithm is also investigated.","PeriodicalId":396850,"journal":{"name":"2014 Australasian Telecommunication Networks and Applications Conference (ATNAC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"A predictive road traffic management system based on vehicular ad-hoc network\",\"authors\":\"N. Nafi, Reduan H. Khan, J. Khan, M. Gregory\",\"doi\":\"10.1109/ATNAC.2014.7020887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With an increasing number of vehicles on the road, demand for intelligent transportation systems is on the rise. In this paper, we present a predictive road traffic management system (PRTMS) based on the Vehicular Ad-hoc Network (VANET) architecture. The proposed PRTMS uses a novel communications scheme to estimate the future traffic intensities at different intersections based on a modified linear prediction algorithm. Based on the prediction, a central controller reduces the congestion level by re-routing the vehicles and adaptively changing the signaling cycles. An IEEE 802.11p based vehicle to-infrastructure communications system is used to collect trip information and transmit control signals to enforce multi-junction traffic flow control. Simulations are conducted using an integrated OPNET model comprised of road infrastructure, vehicular mobility management and communications networking to jointly examine the performances of the proposed PRTMS and the VANET. The results indicate that the proposed scheme provides a significant performance improvement in terms of total journey time and waiting time of the vehicles. In addition, the performance of the prediction algorithm is also investigated.\",\"PeriodicalId\":396850,\"journal\":{\"name\":\"2014 Australasian Telecommunication Networks and Applications Conference (ATNAC)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Australasian Telecommunication Networks and Applications Conference (ATNAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATNAC.2014.7020887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Australasian Telecommunication Networks and Applications Conference (ATNAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATNAC.2014.7020887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

随着道路上车辆数量的增加,对智能交通系统的需求也在上升。本文提出了一种基于车辆自组织网络(VANET)架构的预测道路交通管理系统(PRTMS)。该方法采用一种新颖的通信方案,基于改进的线性预测算法来估计不同交叉口的未来交通强度。在预测的基础上,中央控制器通过车辆改道和自适应改变信号周期来降低拥堵程度。基于IEEE 802.11p的车辆与基础设施通信系统用于收集行程信息和传输控制信号,以实施多路口交通流量控制。利用由道路基础设施、车辆移动管理和通信网络组成的综合OPNET模型进行了仿真,以联合检验拟议的PRTMS和VANET的性能。结果表明,所提出的方案在总行程时间和车辆等待时间方面提供了显著的性能改进。此外,还对预测算法的性能进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A predictive road traffic management system based on vehicular ad-hoc network
With an increasing number of vehicles on the road, demand for intelligent transportation systems is on the rise. In this paper, we present a predictive road traffic management system (PRTMS) based on the Vehicular Ad-hoc Network (VANET) architecture. The proposed PRTMS uses a novel communications scheme to estimate the future traffic intensities at different intersections based on a modified linear prediction algorithm. Based on the prediction, a central controller reduces the congestion level by re-routing the vehicles and adaptively changing the signaling cycles. An IEEE 802.11p based vehicle to-infrastructure communications system is used to collect trip information and transmit control signals to enforce multi-junction traffic flow control. Simulations are conducted using an integrated OPNET model comprised of road infrastructure, vehicular mobility management and communications networking to jointly examine the performances of the proposed PRTMS and the VANET. The results indicate that the proposed scheme provides a significant performance improvement in terms of total journey time and waiting time of the vehicles. In addition, the performance of the prediction algorithm is also investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信