{"title":"学习规划机器人导航的人感知轨迹:一种遗传算法*","authors":"Alberto Bacchin, Gloria Beraldo, E. Menegatti","doi":"10.1109/ecmr50962.2021.9568804","DOIUrl":null,"url":null,"abstract":"Nowadays, one of the emergent challenges in mobile robotics consists of navigating safely and efficiently in dynamic environments populated by people. This paper focuses on the robot’s motion planning by proposing a learning-based method to adjust the robot’s trajectories to people’s movements by respecting the proxemics rules. With this purpose, we design a genetic algorithm to train the navigation stack of ROS during the goal-based navigation while the robot is disturbed by people. We also present a simulation environment based on Gazebo that extends the animated model for emulating a more natural human’s walking. Preliminary results show that our approach is able to plan people-aware robot’s trajectories respecting proxemics limits without worsening the performance in navigation.","PeriodicalId":200521,"journal":{"name":"2021 European Conference on Mobile Robots (ECMR)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning to plan people-aware trajectories for robot navigation: A genetic algorithm*\",\"authors\":\"Alberto Bacchin, Gloria Beraldo, E. Menegatti\",\"doi\":\"10.1109/ecmr50962.2021.9568804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, one of the emergent challenges in mobile robotics consists of navigating safely and efficiently in dynamic environments populated by people. This paper focuses on the robot’s motion planning by proposing a learning-based method to adjust the robot’s trajectories to people’s movements by respecting the proxemics rules. With this purpose, we design a genetic algorithm to train the navigation stack of ROS during the goal-based navigation while the robot is disturbed by people. We also present a simulation environment based on Gazebo that extends the animated model for emulating a more natural human’s walking. Preliminary results show that our approach is able to plan people-aware robot’s trajectories respecting proxemics limits without worsening the performance in navigation.\",\"PeriodicalId\":200521,\"journal\":{\"name\":\"2021 European Conference on Mobile Robots (ECMR)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ecmr50962.2021.9568804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecmr50962.2021.9568804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning to plan people-aware trajectories for robot navigation: A genetic algorithm*
Nowadays, one of the emergent challenges in mobile robotics consists of navigating safely and efficiently in dynamic environments populated by people. This paper focuses on the robot’s motion planning by proposing a learning-based method to adjust the robot’s trajectories to people’s movements by respecting the proxemics rules. With this purpose, we design a genetic algorithm to train the navigation stack of ROS during the goal-based navigation while the robot is disturbed by people. We also present a simulation environment based on Gazebo that extends the animated model for emulating a more natural human’s walking. Preliminary results show that our approach is able to plan people-aware robot’s trajectories respecting proxemics limits without worsening the performance in navigation.