无监督域自适应的量子核子空间对准

Xi He, Feiyu Du
{"title":"无监督域自适应的量子核子空间对准","authors":"Xi He, Feiyu Du","doi":"10.1145/3590003.3590054","DOIUrl":null,"url":null,"abstract":"Domain adaptation (DA), the sub-realm of the transfer learning, attempts to deal with machine learning tasks on an unprocessed data domain with the different, but related labeled source domain. However, the classical DA can not efficiently deal with the cross-domain tasks in quantum mechanical scenarios. In this paper, the quantum kernel subspace alignment algorithm is proposed to achieve the procedure of DA by extracting the non-linear features with the quantum kernel method and aligning the two domains with the unitary evolution. The method presented in our work can be implemented on the universal quantum computer with the quantum basic linear algebra subroutines. Based on the algorithmic complexity analysis, the procedure of the QKSA can be implemented with at least quadratic quantum speedup compared with the classical DA algorithms.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum kernel subspace alignment for unsupervised domain adaptation\",\"authors\":\"Xi He, Feiyu Du\",\"doi\":\"10.1145/3590003.3590054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain adaptation (DA), the sub-realm of the transfer learning, attempts to deal with machine learning tasks on an unprocessed data domain with the different, but related labeled source domain. However, the classical DA can not efficiently deal with the cross-domain tasks in quantum mechanical scenarios. In this paper, the quantum kernel subspace alignment algorithm is proposed to achieve the procedure of DA by extracting the non-linear features with the quantum kernel method and aligning the two domains with the unitary evolution. The method presented in our work can be implemented on the universal quantum computer with the quantum basic linear algebra subroutines. Based on the algorithmic complexity analysis, the procedure of the QKSA can be implemented with at least quadratic quantum speedup compared with the classical DA algorithms.\",\"PeriodicalId\":340225,\"journal\":{\"name\":\"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3590003.3590054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

领域自适应(DA)是迁移学习的子领域,它试图在未处理的数据域上处理具有不同但相关的标记源域的机器学习任务。然而,经典的数据分析不能有效地处理量子力学场景下的跨域任务。本文提出了量子核子空间对齐算法,通过量子核方法提取非线性特征,并对两个域进行幺正演化对齐,实现数据分析过程。本文提出的方法可以用量子基本线性代数子程序在通用量子计算机上实现。基于算法复杂度分析,与经典的数据挖掘算法相比,QKSA的实现速度至少提高了2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum kernel subspace alignment for unsupervised domain adaptation
Domain adaptation (DA), the sub-realm of the transfer learning, attempts to deal with machine learning tasks on an unprocessed data domain with the different, but related labeled source domain. However, the classical DA can not efficiently deal with the cross-domain tasks in quantum mechanical scenarios. In this paper, the quantum kernel subspace alignment algorithm is proposed to achieve the procedure of DA by extracting the non-linear features with the quantum kernel method and aligning the two domains with the unitary evolution. The method presented in our work can be implemented on the universal quantum computer with the quantum basic linear algebra subroutines. Based on the algorithmic complexity analysis, the procedure of the QKSA can be implemented with at least quadratic quantum speedup compared with the classical DA algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信