基于传感器融合的移动机器人位置估计

Daehee IiAiYGt, Ren C. Luo, Hideki Hashimoto, Fiiinio
{"title":"基于传感器融合的移动机器人位置估计","authors":"Daehee IiAiYGt, Ren C. Luo, Hideki Hashimoto, Fiiinio","doi":"10.1109/MFI.1994.398393","DOIUrl":null,"url":null,"abstract":"An accurate position estimation is essential for a mobile robot, especially under partially known environment. Dead reckoning has been commonly used for position estimation. However this method has inherent problems because it also accumulate estimation errors. In this paper we propose two methods to increase the accuracy of estimated positions using multiple sensors information. One method is a probabilistic approach using Bayes rule, and the other is a matching method applying least squared scheme. Both of these two approaches use features, such as corner points and edges of the object in the task environment instead of land-marks. It is shown that we will be able to estimate the position of mobile robot precisely, in which errors are not cumulated.<<ETX>>","PeriodicalId":133630,"journal":{"name":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","volume":"321 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Position estimation for mobile robot using sensor fusion\",\"authors\":\"Daehee IiAiYGt, Ren C. Luo, Hideki Hashimoto, Fiiinio\",\"doi\":\"10.1109/MFI.1994.398393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate position estimation is essential for a mobile robot, especially under partially known environment. Dead reckoning has been commonly used for position estimation. However this method has inherent problems because it also accumulate estimation errors. In this paper we propose two methods to increase the accuracy of estimated positions using multiple sensors information. One method is a probabilistic approach using Bayes rule, and the other is a matching method applying least squared scheme. Both of these two approaches use features, such as corner points and edges of the object in the task environment instead of land-marks. It is shown that we will be able to estimate the position of mobile robot precisely, in which errors are not cumulated.<<ETX>>\",\"PeriodicalId\":133630,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems\",\"volume\":\"321 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.1994.398393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.1994.398393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对于移动机器人来说,准确的位置估计是至关重要的,尤其是在部分已知的环境下。航位推算法通常用于位置估计。然而,这种方法也存在固有的问题,因为它会累积估计误差。本文提出了两种利用多传感器信息来提高位置估计精度的方法。一种是基于贝叶斯规则的概率方法,另一种是基于最小二乘法的匹配方法。这两种方法都使用任务环境中对象的角点和边缘等特征,而不是地标。结果表明,该方法能够在不累积误差的情况下精确估计移动机器人的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Position estimation for mobile robot using sensor fusion
An accurate position estimation is essential for a mobile robot, especially under partially known environment. Dead reckoning has been commonly used for position estimation. However this method has inherent problems because it also accumulate estimation errors. In this paper we propose two methods to increase the accuracy of estimated positions using multiple sensors information. One method is a probabilistic approach using Bayes rule, and the other is a matching method applying least squared scheme. Both of these two approaches use features, such as corner points and edges of the object in the task environment instead of land-marks. It is shown that we will be able to estimate the position of mobile robot precisely, in which errors are not cumulated.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信