ShellSort复杂性的上限

Raquel Marcolino de Souza, Fabiano Oliveira, P. Pinto
{"title":"ShellSort复杂性的上限","authors":"Raquel Marcolino de Souza, Fabiano Oliveira, P. Pinto","doi":"10.5753/ETC.2018.3144","DOIUrl":null,"url":null,"abstract":"The worst-case time complexity of the ShellSort algorithm is known only for some specific sequences (a sequence is a parameter of the algorithm). Relating the algorithm to the Frobenius number concept, we present an algorithm for determining the maximum number of comparisons for any sequence and array to be ordered. We apply this method together with the empirical determination of complexity to analyze several sequences whose worst case complexity are known. We show that the empirical approach succeeded in determining the same complexities which are analytically known and presented its results for sequences with unknown worst-case time complexity.","PeriodicalId":315906,"journal":{"name":"Anais do Encontro de Teoria da Computação (ETC)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Um Limite Superior para a Complexidade do ShellSort\",\"authors\":\"Raquel Marcolino de Souza, Fabiano Oliveira, P. Pinto\",\"doi\":\"10.5753/ETC.2018.3144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The worst-case time complexity of the ShellSort algorithm is known only for some specific sequences (a sequence is a parameter of the algorithm). Relating the algorithm to the Frobenius number concept, we present an algorithm for determining the maximum number of comparisons for any sequence and array to be ordered. We apply this method together with the empirical determination of complexity to analyze several sequences whose worst case complexity are known. We show that the empirical approach succeeded in determining the same complexities which are analytically known and presented its results for sequences with unknown worst-case time complexity.\",\"PeriodicalId\":315906,\"journal\":{\"name\":\"Anais do Encontro de Teoria da Computação (ETC)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Encontro de Teoria da Computação (ETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/ETC.2018.3144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Encontro de Teoria da Computação (ETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ETC.2018.3144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

ShellSort算法的最坏情况时间复杂度仅对某些特定序列(序列是算法的一个参数)是已知的。将该算法与Frobenius数概念联系起来,我们提出了一种算法,用于确定任何排序序列和数组的最大比较次数。我们将此方法与复杂度的经验确定相结合,对已知最坏情况复杂度的几个序列进行了分析。我们证明了经验方法成功地确定了解析已知的相同复杂性,并给出了具有未知最坏情况时间复杂度的序列的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Um Limite Superior para a Complexidade do ShellSort
The worst-case time complexity of the ShellSort algorithm is known only for some specific sequences (a sequence is a parameter of the algorithm). Relating the algorithm to the Frobenius number concept, we present an algorithm for determining the maximum number of comparisons for any sequence and array to be ordered. We apply this method together with the empirical determination of complexity to analyze several sequences whose worst case complexity are known. We show that the empirical approach succeeded in determining the same complexities which are analytically known and presented its results for sequences with unknown worst-case time complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信