告诉我你看到了什么,我会告诉你它在哪里

Jia Xu, A. Schwing, R. Urtasun
{"title":"告诉我你看到了什么,我会告诉你它在哪里","authors":"Jia Xu, A. Schwing, R. Urtasun","doi":"10.1109/CVPR.2014.408","DOIUrl":null,"url":null,"abstract":"We tackle the problem of weakly labeled semantic segmentation, where the only source of annotation are image tags encoding which classes are present in the scene. This is an extremely difficult problem as no pixel-wise labelings are available, not even at training time. In this paper, we show that this problem can be formalized as an instance of learning in a latent structured prediction framework, where the graphical model encodes the presence and absence of a class as well as the assignments of semantic labels to superpixels. As a consequence, we are able to leverage standard algorithms with good theoretical properties. We demonstrate the effectiveness of our approach using the challenging SIFT-flow dataset and show average per-class accuracy improvements of 7% over the state-of-the-art.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"24 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":"{\"title\":\"Tell Me What You See and I Will Show You Where It Is\",\"authors\":\"Jia Xu, A. Schwing, R. Urtasun\",\"doi\":\"10.1109/CVPR.2014.408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We tackle the problem of weakly labeled semantic segmentation, where the only source of annotation are image tags encoding which classes are present in the scene. This is an extremely difficult problem as no pixel-wise labelings are available, not even at training time. In this paper, we show that this problem can be formalized as an instance of learning in a latent structured prediction framework, where the graphical model encodes the presence and absence of a class as well as the assignments of semantic labels to superpixels. As a consequence, we are able to leverage standard algorithms with good theoretical properties. We demonstrate the effectiveness of our approach using the challenging SIFT-flow dataset and show average per-class accuracy improvements of 7% over the state-of-the-art.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"24 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

摘要

我们解决了弱标记语义分割的问题,其中注释的唯一来源是编码场景中存在的类的图像标签。这是一个非常困难的问题,因为没有像素标记可用,甚至在训练时也没有。在本文中,我们证明了这个问题可以形式化为一个潜在结构化预测框架中的学习实例,其中图形模型编码类的存在和不存在以及超像素的语义标签分配。因此,我们能够利用具有良好理论性质的标准算法。我们使用具有挑战性的sift流数据集证明了我们方法的有效性,并显示平均每类精度比最先进的方法提高了7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tell Me What You See and I Will Show You Where It Is
We tackle the problem of weakly labeled semantic segmentation, where the only source of annotation are image tags encoding which classes are present in the scene. This is an extremely difficult problem as no pixel-wise labelings are available, not even at training time. In this paper, we show that this problem can be formalized as an instance of learning in a latent structured prediction framework, where the graphical model encodes the presence and absence of a class as well as the assignments of semantic labels to superpixels. As a consequence, we are able to leverage standard algorithms with good theoretical properties. We demonstrate the effectiveness of our approach using the challenging SIFT-flow dataset and show average per-class accuracy improvements of 7% over the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信