基于随机度和隐马尔可夫模型的涂层球轴承在线健康监测

B. Ling, M. Khonsari, A. Mesgarnejad, Ross Hathaway
{"title":"基于随机度和隐马尔可夫模型的涂层球轴承在线健康监测","authors":"B. Ling, M. Khonsari, A. Mesgarnejad, Ross Hathaway","doi":"10.1109/AERO.2009.4839674","DOIUrl":null,"url":null,"abstract":"We present a feasibility analysis for the development of an online ball bearing fault detection and identification method which can effectively classify various fault stages related to the contact in the coated ball bearings using vibration measurements. To detect ball bearing faulty stages, we have developed new degree of randomness (DoR) analysis methods using Shannon entropy and random covariance matrix norm theory. To classify the fault stages, we have further developed a set of stochastic models using Gaussian Mixture Hidden Markov Model (GM-HMM) theory. Test results have shown that our algorithms can predict bearing failures without using actual failure data.","PeriodicalId":117250,"journal":{"name":"2009 IEEE Aerospace conference","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Online coated ball bearing health monitoring using degree of randomness and Hidden Markov Model\",\"authors\":\"B. Ling, M. Khonsari, A. Mesgarnejad, Ross Hathaway\",\"doi\":\"10.1109/AERO.2009.4839674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a feasibility analysis for the development of an online ball bearing fault detection and identification method which can effectively classify various fault stages related to the contact in the coated ball bearings using vibration measurements. To detect ball bearing faulty stages, we have developed new degree of randomness (DoR) analysis methods using Shannon entropy and random covariance matrix norm theory. To classify the fault stages, we have further developed a set of stochastic models using Gaussian Mixture Hidden Markov Model (GM-HMM) theory. Test results have shown that our algorithms can predict bearing failures without using actual failure data.\",\"PeriodicalId\":117250,\"journal\":{\"name\":\"2009 IEEE Aerospace conference\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Aerospace conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2009.4839674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Aerospace conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2009.4839674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于振动测量的在线球轴承故障检测与识别方法的可行性分析,该方法可以有效地对涂层球轴承中与接触相关的各种故障阶段进行分类。为了检测滚珠轴承故障阶段,我们利用香农熵和随机协方差矩阵范数理论,提出了新的随机度分析方法。为了对故障阶段进行分类,我们进一步利用高斯混合隐马尔可夫模型(GM-HMM)理论建立了一套随机模型。测试结果表明,我们的算法可以在不使用实际故障数据的情况下预测轴承故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online coated ball bearing health monitoring using degree of randomness and Hidden Markov Model
We present a feasibility analysis for the development of an online ball bearing fault detection and identification method which can effectively classify various fault stages related to the contact in the coated ball bearings using vibration measurements. To detect ball bearing faulty stages, we have developed new degree of randomness (DoR) analysis methods using Shannon entropy and random covariance matrix norm theory. To classify the fault stages, we have further developed a set of stochastic models using Gaussian Mixture Hidden Markov Model (GM-HMM) theory. Test results have shown that our algorithms can predict bearing failures without using actual failure data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信