大型网络社区中严重情绪障碍症状的挖掘

T. Chomutare, E. Årsand, G. Hartvigsen
{"title":"大型网络社区中严重情绪障碍症状的挖掘","authors":"T. Chomutare, E. Årsand, G. Hartvigsen","doi":"10.1109/CBMS.2015.36","DOIUrl":null,"url":null,"abstract":"Internet communities have become an important source of support for people with chronic illnesses such as diabetes and obesity, both of which have been associated with depression. In this paper, we argue text classification as promising tool for mining mood disorder cues from Internet chat messages. We created a minimal corpus of 200 chat profiles, based on a disease classification system, ICD-10 diagnostic criteria, and DSM-IV depression definitions. Using significant grams, we trained and tested multiple classifiers on the corpus, with additional evaluation on unlabelled data. Current findings demonstrate the feasibility of scalable flagging of patients who areat risk of developing severe depression in large Internet health communities.","PeriodicalId":164356,"journal":{"name":"2015 IEEE 28th International Symposium on Computer-Based Medical Systems","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mining Symptoms of Severe Mood Disorders in Large Internet Communities\",\"authors\":\"T. Chomutare, E. Årsand, G. Hartvigsen\",\"doi\":\"10.1109/CBMS.2015.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet communities have become an important source of support for people with chronic illnesses such as diabetes and obesity, both of which have been associated with depression. In this paper, we argue text classification as promising tool for mining mood disorder cues from Internet chat messages. We created a minimal corpus of 200 chat profiles, based on a disease classification system, ICD-10 diagnostic criteria, and DSM-IV depression definitions. Using significant grams, we trained and tested multiple classifiers on the corpus, with additional evaluation on unlabelled data. Current findings demonstrate the feasibility of scalable flagging of patients who areat risk of developing severe depression in large Internet health communities.\",\"PeriodicalId\":164356,\"journal\":{\"name\":\"2015 IEEE 28th International Symposium on Computer-Based Medical Systems\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 28th International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2015.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 28th International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2015.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

互联网社区已经成为糖尿病和肥胖症等慢性疾病患者的重要支持来源,这两种疾病都与抑郁症有关。在本文中,我们认为文本分类是挖掘网络聊天信息中情绪障碍线索的有前途的工具。基于疾病分类系统、ICD-10诊断标准和DSM-IV抑郁症定义,我们创建了一个包含200个聊天档案的最小语料库。使用显著克,我们在语料库上训练和测试了多个分类器,并对未标记的数据进行了额外的评估。目前的研究结果表明,在大型互联网健康社区中,对有患严重抑郁症风险的患者进行大规模标记是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Symptoms of Severe Mood Disorders in Large Internet Communities
Internet communities have become an important source of support for people with chronic illnesses such as diabetes and obesity, both of which have been associated with depression. In this paper, we argue text classification as promising tool for mining mood disorder cues from Internet chat messages. We created a minimal corpus of 200 chat profiles, based on a disease classification system, ICD-10 diagnostic criteria, and DSM-IV depression definitions. Using significant grams, we trained and tested multiple classifiers on the corpus, with additional evaluation on unlabelled data. Current findings demonstrate the feasibility of scalable flagging of patients who areat risk of developing severe depression in large Internet health communities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信