MPLS快速路由中一对一备份的容量需求

Rüdiger Martin, M. Menth, K. Canbolat
{"title":"MPLS快速路由中一对一备份的容量需求","authors":"Rüdiger Martin, M. Menth, K. Canbolat","doi":"10.1109/BROADNETS.2006.4374358","DOIUrl":null,"url":null,"abstract":"MPLS fast reroute (MPLS-FRR) mechanisms deviate the traffic in case of network failures at the router closest to the outage location to achieve an extremely fast reaction time. We review the one-to-one backup and the facility backup that are options for MPLS-FRR to deviate the traffic via a detour or a bypass around the failed elements, respectively. Basically, the backup paths can take the shortest path that avoids the outage location from the point of local repair to the tail-end router or to the merge point with the primary path. We suggest two simple modifications that lead to a new path layout which can be implemented by one-to-one and by facility backup. We evaluate the backup capacity requirements, the length of the backup paths, and the number of backup paths per primary path in a parametric study regarding the network characteristics. Our proposals save a considerable amount of backup capacity compared to the standard mechanisms. They are suitable for application in practice since they are simple and conform to the standards.","PeriodicalId":147887,"journal":{"name":"2006 3rd International Conference on Broadband Communications, Networks and Systems","volume":"52 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Capacity Requirements for the One-to-One Backup Option in MPLS Fast Reroute\",\"authors\":\"Rüdiger Martin, M. Menth, K. Canbolat\",\"doi\":\"10.1109/BROADNETS.2006.4374358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MPLS fast reroute (MPLS-FRR) mechanisms deviate the traffic in case of network failures at the router closest to the outage location to achieve an extremely fast reaction time. We review the one-to-one backup and the facility backup that are options for MPLS-FRR to deviate the traffic via a detour or a bypass around the failed elements, respectively. Basically, the backup paths can take the shortest path that avoids the outage location from the point of local repair to the tail-end router or to the merge point with the primary path. We suggest two simple modifications that lead to a new path layout which can be implemented by one-to-one and by facility backup. We evaluate the backup capacity requirements, the length of the backup paths, and the number of backup paths per primary path in a parametric study regarding the network characteristics. Our proposals save a considerable amount of backup capacity compared to the standard mechanisms. They are suitable for application in practice since they are simple and conform to the standards.\",\"PeriodicalId\":147887,\"journal\":{\"name\":\"2006 3rd International Conference on Broadband Communications, Networks and Systems\",\"volume\":\"52 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 3rd International Conference on Broadband Communications, Networks and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BROADNETS.2006.4374358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International Conference on Broadband Communications, Networks and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BROADNETS.2006.4374358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

MPLS快速重路由(MPLS- frr)机制可以在网络故障的情况下,在距离中断位置最近的路由器上偏离流量,从而实现极快的反应时间。我们分别讨论了一对一备份和设施备份,这两种备份是MPLS-FRR通过绕行或绕过故障元件使流量偏离的选项。基本上,备份路径可以选择从本地修复点到尾端路由器或与主路径合并点的最短路径,以避免中断位置。我们建议两个简单的修改,导致一个新的路径布局,可以实现一对一和设施备份。在关于网络特性的参数化研究中,我们评估了备份容量需求、备份路径的长度以及每个主路径的备份路径数量。与标准机制相比,我们的建议节省了相当多的备份容量。这些方法简单、符合标准,适合实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capacity Requirements for the One-to-One Backup Option in MPLS Fast Reroute
MPLS fast reroute (MPLS-FRR) mechanisms deviate the traffic in case of network failures at the router closest to the outage location to achieve an extremely fast reaction time. We review the one-to-one backup and the facility backup that are options for MPLS-FRR to deviate the traffic via a detour or a bypass around the failed elements, respectively. Basically, the backup paths can take the shortest path that avoids the outage location from the point of local repair to the tail-end router or to the merge point with the primary path. We suggest two simple modifications that lead to a new path layout which can be implemented by one-to-one and by facility backup. We evaluate the backup capacity requirements, the length of the backup paths, and the number of backup paths per primary path in a parametric study regarding the network characteristics. Our proposals save a considerable amount of backup capacity compared to the standard mechanisms. They are suitable for application in practice since they are simple and conform to the standards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信