基于人工神经网络磁链估计的开关磁阻电机反步控制

Phi Hoang Nha, Phạm Hùng Phi, Dao Quang Thuy, Lê Xuân Hải, Pham Xuan Dat, N. N. Linh
{"title":"基于人工神经网络磁链估计的开关磁阻电机反步控制","authors":"Phi Hoang Nha, Phạm Hùng Phi, Dao Quang Thuy, Lê Xuân Hải, Pham Xuan Dat, N. N. Linh","doi":"10.25073/2588-1086/vnucsce.296","DOIUrl":null,"url":null,"abstract":"The paper presents a new approach to design a nonlinear controller for switched reluctance motors (SRMs) based on backstepping technique and artificial neuron network (ANN) in flux estimator. Backstepping controller with an ANN flux estimator will be applied for controlling SRMs which have a nonlinear drive model. The ANN flux estimator was trained off-line using backpropagation algorithm. The stability of the closed control loop was analyzed and proved accroding to the Lyapunov stability standard. The numerical simulation results confirmed the accuracy of the estimator and the quality of the backstepping control system.","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backstepping Control of Switched Reluctance Motor with Artificial Neural Network based Flux Estimator\",\"authors\":\"Phi Hoang Nha, Phạm Hùng Phi, Dao Quang Thuy, Lê Xuân Hải, Pham Xuan Dat, N. N. Linh\",\"doi\":\"10.25073/2588-1086/vnucsce.296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a new approach to design a nonlinear controller for switched reluctance motors (SRMs) based on backstepping technique and artificial neuron network (ANN) in flux estimator. Backstepping controller with an ANN flux estimator will be applied for controlling SRMs which have a nonlinear drive model. The ANN flux estimator was trained off-line using backpropagation algorithm. The stability of the closed control loop was analyzed and proved accroding to the Lyapunov stability standard. The numerical simulation results confirmed the accuracy of the estimator and the quality of the backstepping control system.\",\"PeriodicalId\":416488,\"journal\":{\"name\":\"VNU Journal of Science: Computer Science and Communication Engineering\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VNU Journal of Science: Computer Science and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25073/2588-1086/vnucsce.296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/vnucsce.296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于反步法和人工神经元网络的开关磁阻电机非线性控制器设计方法。将带神经网络磁链估计器的反步控制器应用于具有非线性驱动模型的srm的控制。采用反向传播算法离线训练人工神经网络通量估计器。根据李雅普诺夫稳定性标准,分析并证明了闭环控制回路的稳定性。数值仿真结果验证了估计器的准确性和反步控制系统的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Backstepping Control of Switched Reluctance Motor with Artificial Neural Network based Flux Estimator
The paper presents a new approach to design a nonlinear controller for switched reluctance motors (SRMs) based on backstepping technique and artificial neuron network (ANN) in flux estimator. Backstepping controller with an ANN flux estimator will be applied for controlling SRMs which have a nonlinear drive model. The ANN flux estimator was trained off-line using backpropagation algorithm. The stability of the closed control loop was analyzed and proved accroding to the Lyapunov stability standard. The numerical simulation results confirmed the accuracy of the estimator and the quality of the backstepping control system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信