使用新算法部署移动节点连接无线传感器网络

Chang Wu, Yu, Elvis Chen, Chun-Cheng Fang
{"title":"使用新算法部署移动节点连接无线传感器网络","authors":"Chang Wu, Yu, Elvis Chen, Chun-Cheng Fang","doi":"10.1109/WASA.2007.62","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks receive lots of attention due to its promising techniques and wide-ranging applications in recent years. The kind of network occasionally becomes disconnected due to initial uneven deployments or unpredictable failures or run out of battery of sensor nodes. However, sensor nodes with mobility then can be used in an addition deployment to reconnect the disconnected sensor networks. Theoretically, the augmenting geometric graph problem is defined here to model this kind of connectivity issues. The work proposes two novel algorithms: the graph-oriented algorithm and the divide-and-conquer algorithm to connect disconnected networks by using as less as possible mobile nodes. The first algorithm highly exploits traditional graph and geometry techniques including Fermat point, convex hull, nearest neighbor, minimum cost spanning tree, and graph contraction. Adopting a quite different approach, the second algorithm resolves the problem by dividing the deployed area and merging sub-solutions recursively. With respect to complexity issue, the graph-oriented algorithm takes 0(n3) time; on the other hand, the divide-and-conquer algorithm requires 0(n log n) time, where n is the size of vertex set of the given graph G=(V, E). These proposed two algorithms have low time complexity and can be implemented in a centralized sensor network.","PeriodicalId":316831,"journal":{"name":"International Conference on Wireless Algorithms, Systems and Applications (WASA 2007)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Deploying Mobile Nodes to Connect Wireless Sensor Networks Using Novel Algorithms\",\"authors\":\"Chang Wu, Yu, Elvis Chen, Chun-Cheng Fang\",\"doi\":\"10.1109/WASA.2007.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor networks receive lots of attention due to its promising techniques and wide-ranging applications in recent years. The kind of network occasionally becomes disconnected due to initial uneven deployments or unpredictable failures or run out of battery of sensor nodes. However, sensor nodes with mobility then can be used in an addition deployment to reconnect the disconnected sensor networks. Theoretically, the augmenting geometric graph problem is defined here to model this kind of connectivity issues. The work proposes two novel algorithms: the graph-oriented algorithm and the divide-and-conquer algorithm to connect disconnected networks by using as less as possible mobile nodes. The first algorithm highly exploits traditional graph and geometry techniques including Fermat point, convex hull, nearest neighbor, minimum cost spanning tree, and graph contraction. Adopting a quite different approach, the second algorithm resolves the problem by dividing the deployed area and merging sub-solutions recursively. With respect to complexity issue, the graph-oriented algorithm takes 0(n3) time; on the other hand, the divide-and-conquer algorithm requires 0(n log n) time, where n is the size of vertex set of the given graph G=(V, E). These proposed two algorithms have low time complexity and can be implemented in a centralized sensor network.\",\"PeriodicalId\":316831,\"journal\":{\"name\":\"International Conference on Wireless Algorithms, Systems and Applications (WASA 2007)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Wireless Algorithms, Systems and Applications (WASA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASA.2007.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Wireless Algorithms, Systems and Applications (WASA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASA.2007.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,无线传感器网络因其具有广阔的应用前景而备受关注。这种类型的网络偶尔会由于初始部署不均匀或不可预测的故障或传感器节点电池耗尽而断开。但是,具有移动性的传感器节点可以在附加部署中用于重新连接断开的传感器网络。从理论上讲,本文定义了增广几何图问题来模拟这类连通性问题。这项工作提出了两种新颖的算法:面向图的算法和分而治之的算法,通过使用尽可能少的移动节点来连接断开的网络。第一种算法高度利用了传统的图和几何技术,包括费马点、凸包、最近邻、最小代价生成树和图收缩。第二种算法采用完全不同的方法,通过划分部署区域并递归合并子解决方案来解决问题。对于复杂度问题,面向图算法耗时0(n3);另一方面,分治算法需要0(n log n)时间,其中n为给定图G=(V, E)的顶点集的大小。这两种算法具有较低的时间复杂度,可以在集中式传感器网络中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deploying Mobile Nodes to Connect Wireless Sensor Networks Using Novel Algorithms
Wireless sensor networks receive lots of attention due to its promising techniques and wide-ranging applications in recent years. The kind of network occasionally becomes disconnected due to initial uneven deployments or unpredictable failures or run out of battery of sensor nodes. However, sensor nodes with mobility then can be used in an addition deployment to reconnect the disconnected sensor networks. Theoretically, the augmenting geometric graph problem is defined here to model this kind of connectivity issues. The work proposes two novel algorithms: the graph-oriented algorithm and the divide-and-conquer algorithm to connect disconnected networks by using as less as possible mobile nodes. The first algorithm highly exploits traditional graph and geometry techniques including Fermat point, convex hull, nearest neighbor, minimum cost spanning tree, and graph contraction. Adopting a quite different approach, the second algorithm resolves the problem by dividing the deployed area and merging sub-solutions recursively. With respect to complexity issue, the graph-oriented algorithm takes 0(n3) time; on the other hand, the divide-and-conquer algorithm requires 0(n log n) time, where n is the size of vertex set of the given graph G=(V, E). These proposed two algorithms have low time complexity and can be implemented in a centralized sensor network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信