基于神经网络的软件可靠性预测

N. Karunanithi, Y. Malaiya, L. D. Whitley
{"title":"基于神经网络的软件可靠性预测","authors":"N. Karunanithi, Y. Malaiya, L. D. Whitley","doi":"10.1109/ISSRE.1991.145366","DOIUrl":null,"url":null,"abstract":"Software reliability growth models have achieved considerable importance in estimating reliability of software products. The authors explore the use of feed-forward neural networks as a model for software reliability growth prediction. To empirically evaluate the predictive capability of this new approach, data sets from different software projects are used. The neural networks approach exhibits a consistent behavior in prediction and the predictive performance is comparable to that of parametric models.<<ETX>>","PeriodicalId":338844,"journal":{"name":"Proceedings. 1991 International Symposium on Software Reliability Engineering","volume":"356 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"Prediction of software reliability using neural networks\",\"authors\":\"N. Karunanithi, Y. Malaiya, L. D. Whitley\",\"doi\":\"10.1109/ISSRE.1991.145366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software reliability growth models have achieved considerable importance in estimating reliability of software products. The authors explore the use of feed-forward neural networks as a model for software reliability growth prediction. To empirically evaluate the predictive capability of this new approach, data sets from different software projects are used. The neural networks approach exhibits a consistent behavior in prediction and the predictive performance is comparable to that of parametric models.<<ETX>>\",\"PeriodicalId\":338844,\"journal\":{\"name\":\"Proceedings. 1991 International Symposium on Software Reliability Engineering\",\"volume\":\"356 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1991 International Symposium on Software Reliability Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE.1991.145366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1991 International Symposium on Software Reliability Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.1991.145366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

摘要

软件可靠性增长模型在软件产品可靠性评估中具有相当重要的意义。作者探讨了前馈神经网络作为软件可靠性增长预测模型的应用。为了经验性地评估这种新方法的预测能力,使用了来自不同软件项目的数据集。神经网络方法在预测中表现出一致的行为,预测性能与参数模型相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of software reliability using neural networks
Software reliability growth models have achieved considerable importance in estimating reliability of software products. The authors explore the use of feed-forward neural networks as a model for software reliability growth prediction. To empirically evaluate the predictive capability of this new approach, data sets from different software projects are used. The neural networks approach exhibits a consistent behavior in prediction and the predictive performance is comparable to that of parametric models.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信