Huseyn Huseynov, Kenichi Kourai, T. Saadawi, O. Igbe
{"title":"基于异常的键盘记录器检测的虚拟机自省","authors":"Huseyn Huseynov, Kenichi Kourai, T. Saadawi, O. Igbe","doi":"10.1109/HPSR48589.2020.9098980","DOIUrl":null,"url":null,"abstract":"Software Keyloggers are dominant class of malicious applications that surreptitiously logs all the user activity to gather confidential information. Among many other types of keyloggers, API-based keyloggers can pretend as unprivileged program running in a user-space to eavesdrop and record all the keystrokes typed by the user. In a Linux environment, defending against these types of malware means defending the kernel against being compromised and it is still an open and difficult problem. Considering how recent trend of edge computing extends cloud computing and the Internet of Things (IoT) to the edge of the network, a new types of intrusion-detection system (IDS) has been used to mitigate cybersecurity threats in edge computing. Proposed work aims to provide secure environment by constantly checking virtual machines for the presence of keyloggers using cutting edge artificial immune system (AIS) based technology. The algorithms that exist in the field of AIS exploit the immune system’s characteristics of learning and memory to solve diverse problems. We further present our approach by employing an architecture where host OS and a virtual machine (VM) layer actively collaborate to guarantee kernel integrity. This collaborative approach allows us to introspect VM by tracking events (interrupts, system calls, memory writes, network activities, etc.) and to detect anomalies by employing negative selection algorithm (NSA).","PeriodicalId":163393,"journal":{"name":"2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Virtual Machine Introspection for Anomaly-Based Keylogger Detection\",\"authors\":\"Huseyn Huseynov, Kenichi Kourai, T. Saadawi, O. Igbe\",\"doi\":\"10.1109/HPSR48589.2020.9098980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software Keyloggers are dominant class of malicious applications that surreptitiously logs all the user activity to gather confidential information. Among many other types of keyloggers, API-based keyloggers can pretend as unprivileged program running in a user-space to eavesdrop and record all the keystrokes typed by the user. In a Linux environment, defending against these types of malware means defending the kernel against being compromised and it is still an open and difficult problem. Considering how recent trend of edge computing extends cloud computing and the Internet of Things (IoT) to the edge of the network, a new types of intrusion-detection system (IDS) has been used to mitigate cybersecurity threats in edge computing. Proposed work aims to provide secure environment by constantly checking virtual machines for the presence of keyloggers using cutting edge artificial immune system (AIS) based technology. The algorithms that exist in the field of AIS exploit the immune system’s characteristics of learning and memory to solve diverse problems. We further present our approach by employing an architecture where host OS and a virtual machine (VM) layer actively collaborate to guarantee kernel integrity. This collaborative approach allows us to introspect VM by tracking events (interrupts, system calls, memory writes, network activities, etc.) and to detect anomalies by employing negative selection algorithm (NSA).\",\"PeriodicalId\":163393,\"journal\":{\"name\":\"2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPSR48589.2020.9098980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPSR48589.2020.9098980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Virtual Machine Introspection for Anomaly-Based Keylogger Detection
Software Keyloggers are dominant class of malicious applications that surreptitiously logs all the user activity to gather confidential information. Among many other types of keyloggers, API-based keyloggers can pretend as unprivileged program running in a user-space to eavesdrop and record all the keystrokes typed by the user. In a Linux environment, defending against these types of malware means defending the kernel against being compromised and it is still an open and difficult problem. Considering how recent trend of edge computing extends cloud computing and the Internet of Things (IoT) to the edge of the network, a new types of intrusion-detection system (IDS) has been used to mitigate cybersecurity threats in edge computing. Proposed work aims to provide secure environment by constantly checking virtual machines for the presence of keyloggers using cutting edge artificial immune system (AIS) based technology. The algorithms that exist in the field of AIS exploit the immune system’s characteristics of learning and memory to solve diverse problems. We further present our approach by employing an architecture where host OS and a virtual machine (VM) layer actively collaborate to guarantee kernel integrity. This collaborative approach allows us to introspect VM by tracking events (interrupts, system calls, memory writes, network activities, etc.) and to detect anomalies by employing negative selection algorithm (NSA).