通过双系统解释黑匣子模型

Federico Maria Cau
{"title":"通过双系统解释黑匣子模型","authors":"Federico Maria Cau","doi":"10.1145/3379336.3381511","DOIUrl":null,"url":null,"abstract":"This paper presents the early stages of my PhD research aiming at advancing the field of eXplainable AI (XAI) investigating the twinsystems, where an uninterpretable black-box model is twinned with a white-box one, usually less accurate but more inspectable, to provide explanations to the classification results.We focus in particular on the twinning occurring between an Artificial Neural Network (ANN) and a Case-Based Reasoning (CBR) system, so-called ANNCBR twins, to explain the predictions in a post-hoc manner taking account of (i) a feature-weighting method for mirroring the ANN results in the CBR, (ii) a set of evaluation metrics that correlate the ANN to other white/grey models supporting explanations for users, (iii) a taxonomy of methods for generating explanations from the twinning for the neural network's predictions.","PeriodicalId":335081,"journal":{"name":"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Explaining Black Box Models Through Twin Systems\",\"authors\":\"Federico Maria Cau\",\"doi\":\"10.1145/3379336.3381511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the early stages of my PhD research aiming at advancing the field of eXplainable AI (XAI) investigating the twinsystems, where an uninterpretable black-box model is twinned with a white-box one, usually less accurate but more inspectable, to provide explanations to the classification results.We focus in particular on the twinning occurring between an Artificial Neural Network (ANN) and a Case-Based Reasoning (CBR) system, so-called ANNCBR twins, to explain the predictions in a post-hoc manner taking account of (i) a feature-weighting method for mirroring the ANN results in the CBR, (ii) a set of evaluation metrics that correlate the ANN to other white/grey models supporting explanations for users, (iii) a taxonomy of methods for generating explanations from the twinning for the neural network's predictions.\",\"PeriodicalId\":335081,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3379336.3381511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3379336.3381511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了我博士研究的早期阶段,旨在推进可解释人工智能(XAI)领域的研究,研究孪生系统,其中一个不可解释的黑箱模型与一个白盒模型相结合,通常不太准确,但更可检查,为分类结果提供解释。我们特别关注人工神经网络(ANN)和基于案例的推理(CBR)系统之间发生的双胞胎,即所谓的ANNCBR双胞胎,以事后方式解释预测,考虑到(i)在CBR中镜像人工神经网络结果的特征加权方法,(ii)将人工神经网络与其他支持用户解释的白色/灰色模型相关联的一组评估指标。(iii)为神经网络的预测从双胞胎中生成解释的方法分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explaining Black Box Models Through Twin Systems
This paper presents the early stages of my PhD research aiming at advancing the field of eXplainable AI (XAI) investigating the twinsystems, where an uninterpretable black-box model is twinned with a white-box one, usually less accurate but more inspectable, to provide explanations to the classification results.We focus in particular on the twinning occurring between an Artificial Neural Network (ANN) and a Case-Based Reasoning (CBR) system, so-called ANNCBR twins, to explain the predictions in a post-hoc manner taking account of (i) a feature-weighting method for mirroring the ANN results in the CBR, (ii) a set of evaluation metrics that correlate the ANN to other white/grey models supporting explanations for users, (iii) a taxonomy of methods for generating explanations from the twinning for the neural network's predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信