啁啾分解的冗余时频边际

L. Weruaga
{"title":"啁啾分解的冗余时频边际","authors":"L. Weruaga","doi":"10.1109/MLSP.2012.6349775","DOIUrl":null,"url":null,"abstract":"This paper presents the foundations of a novel method for chirplet signal decomposition. In contrast to basis-pursuit techniques on over-complete dictionaries, the proposed method uses a reduced set of adaptive parametric chirplets. The estimation criterion corresponds to the maximization of the likelihood of the chirplet parameters from redundant time-frequency marginals. The optimization algorithm that results from this scenario combines Gaussian mixture models and Huber's robust regression in an iterative fashion. Simulation results support the proposed avenue.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Redundant time-frequency marginals for chirplet decomposition\",\"authors\":\"L. Weruaga\",\"doi\":\"10.1109/MLSP.2012.6349775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the foundations of a novel method for chirplet signal decomposition. In contrast to basis-pursuit techniques on over-complete dictionaries, the proposed method uses a reduced set of adaptive parametric chirplets. The estimation criterion corresponds to the maximization of the likelihood of the chirplet parameters from redundant time-frequency marginals. The optimization algorithm that results from this scenario combines Gaussian mixture models and Huber's robust regression in an iterative fashion. Simulation results support the proposed avenue.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的小波信号分解方法的基础。与基于过完备字典的基追踪技术相比,该方法使用了一组简化的自适应参数小波。估计准则对应于从冗余时频边缘得到的啁啾参数的最大似然。这种情况下产生的优化算法以迭代的方式结合了高斯混合模型和Huber的鲁棒回归。仿真结果支持该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Redundant time-frequency marginals for chirplet decomposition
This paper presents the foundations of a novel method for chirplet signal decomposition. In contrast to basis-pursuit techniques on over-complete dictionaries, the proposed method uses a reduced set of adaptive parametric chirplets. The estimation criterion corresponds to the maximization of the likelihood of the chirplet parameters from redundant time-frequency marginals. The optimization algorithm that results from this scenario combines Gaussian mixture models and Huber's robust regression in an iterative fashion. Simulation results support the proposed avenue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信