基于小波变换统计矩的虹膜特征提取

N. Suciati, Afdhal Basith Anugrah, C. Fatichah, H. Tjandrasa, A. Arifin, D. Purwitasari, D. A. Navastara
{"title":"基于小波变换统计矩的虹膜特征提取","authors":"N. Suciati, Afdhal Basith Anugrah, C. Fatichah, H. Tjandrasa, A. Arifin, D. Purwitasari, D. A. Navastara","doi":"10.1109/ICTS.2016.7910297","DOIUrl":null,"url":null,"abstract":"Iris is unique for each person, so that it can be used as one alternative solution for human identification. In this study, an iris recognition system is developed to automatically identify a person by using eye image data. Firstly, iris area of eye image is detected using Canny Edge Detection and Hough Transform methods. Secondly, texture feature of iris image is extracted using statistical moments of Wavelet Transform. Furthermore, the texture feature representation is recognized using Support Vector Machine classifier method. Experiment on CASIA eye image dataset gives good recognition rate, that is 93.5%.","PeriodicalId":177275,"journal":{"name":"2016 International Conference on Information & Communication Technology and Systems (ICTS)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Feature extraction using statistical moments of wavelet transform for iris recognition\",\"authors\":\"N. Suciati, Afdhal Basith Anugrah, C. Fatichah, H. Tjandrasa, A. Arifin, D. Purwitasari, D. A. Navastara\",\"doi\":\"10.1109/ICTS.2016.7910297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iris is unique for each person, so that it can be used as one alternative solution for human identification. In this study, an iris recognition system is developed to automatically identify a person by using eye image data. Firstly, iris area of eye image is detected using Canny Edge Detection and Hough Transform methods. Secondly, texture feature of iris image is extracted using statistical moments of Wavelet Transform. Furthermore, the texture feature representation is recognized using Support Vector Machine classifier method. Experiment on CASIA eye image dataset gives good recognition rate, that is 93.5%.\",\"PeriodicalId\":177275,\"journal\":{\"name\":\"2016 International Conference on Information & Communication Technology and Systems (ICTS)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Information & Communication Technology and Systems (ICTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTS.2016.7910297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Information & Communication Technology and Systems (ICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTS.2016.7910297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

虹膜对每个人来说都是独一无二的,因此它可以作为人类身份识别的替代解决方案。本研究开发了一种虹膜识别系统,利用人眼图像数据自动识别人的身份。首先,利用Canny边缘检测和Hough变换方法检测人眼图像的虹膜区域;其次,利用小波变换的统计矩提取虹膜图像的纹理特征;在此基础上,利用支持向量机分类器对纹理特征进行识别。在CASIA眼图像数据集上进行实验,获得了良好的识别率,达到93.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature extraction using statistical moments of wavelet transform for iris recognition
Iris is unique for each person, so that it can be used as one alternative solution for human identification. In this study, an iris recognition system is developed to automatically identify a person by using eye image data. Firstly, iris area of eye image is detected using Canny Edge Detection and Hough Transform methods. Secondly, texture feature of iris image is extracted using statistical moments of Wavelet Transform. Furthermore, the texture feature representation is recognized using Support Vector Machine classifier method. Experiment on CASIA eye image dataset gives good recognition rate, that is 93.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信