超声数据的机器学习用于碱-硅反应混凝土膨胀预测

Hongbin Sun, Jinying Zhu, P. Ramuhalli
{"title":"超声数据的机器学习用于碱-硅反应混凝土膨胀预测","authors":"Hongbin Sun, Jinying Zhu, P. Ramuhalli","doi":"10.12783/shm2021/36321","DOIUrl":null,"url":null,"abstract":"Ultrasonic nondestructive testing is a promising method for performing damage assessments on concrete subjected to alkali-silica reactions (ASRs). Previous research incorporated only some ultrasonic wave parameters, and the other information from the ultrasonic signals was discarded. In this work, 13 features, including wave velocity and wavelet features, were extracted from the ultrasonic signals. A curve-fitting method was used to fit a polynomial relationship between the wave velocity and expansion of one concrete sample subjected to ASR to predict the expansion of another concrete sample subjected to ASR. Support vector regression (SVR), a machine learning model, was trained using all 13 features derived from the ultrasonic data obtained from the ASR samples. The SVR was then tested using the datasets from the ASR-2D sample. The performance showed that the curve-fitting method and the SVR had poor prediction results on the expansion of the ASR-2D sample. With feature selection, the performance of the SVR model using six selected features was significantly improved.","PeriodicalId":180083,"journal":{"name":"Proceedings of the 13th International Workshop on Structural Health Monitoring","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MACHINE LEARNING OF ULTRASONIC DATA FOR EXPANSION PREDICTION OF CONCRETE WITH ALKALI-SILICA REACTION\",\"authors\":\"Hongbin Sun, Jinying Zhu, P. Ramuhalli\",\"doi\":\"10.12783/shm2021/36321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasonic nondestructive testing is a promising method for performing damage assessments on concrete subjected to alkali-silica reactions (ASRs). Previous research incorporated only some ultrasonic wave parameters, and the other information from the ultrasonic signals was discarded. In this work, 13 features, including wave velocity and wavelet features, were extracted from the ultrasonic signals. A curve-fitting method was used to fit a polynomial relationship between the wave velocity and expansion of one concrete sample subjected to ASR to predict the expansion of another concrete sample subjected to ASR. Support vector regression (SVR), a machine learning model, was trained using all 13 features derived from the ultrasonic data obtained from the ASR samples. The SVR was then tested using the datasets from the ASR-2D sample. The performance showed that the curve-fitting method and the SVR had poor prediction results on the expansion of the ASR-2D sample. With feature selection, the performance of the SVR model using six selected features was significantly improved.\",\"PeriodicalId\":180083,\"journal\":{\"name\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/shm2021/36321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/shm2021/36321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

超声无损检测是一种很有前途的对混凝土进行碱-硅反应损伤评估的方法。以往的研究只纳入了部分超声波参数,而忽略了超声波信号中的其他信息。本文从超声信号中提取了13个特征,包括波速特征和小波特征。采用曲线拟合的方法,拟合波速与试样膨胀量之间的多项式关系,预测另一试样的膨胀量。支持向量回归(SVR)是一种机器学习模型,使用从ASR样本中获得的超声数据中获得的所有13个特征进行训练。然后使用来自ASR-2D样本的数据集测试SVR。结果表明,曲线拟合方法和SVR对ASR-2D试样膨胀的预测效果较差。通过特征选择,选择六个特征的支持向量回归模型的性能得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MACHINE LEARNING OF ULTRASONIC DATA FOR EXPANSION PREDICTION OF CONCRETE WITH ALKALI-SILICA REACTION
Ultrasonic nondestructive testing is a promising method for performing damage assessments on concrete subjected to alkali-silica reactions (ASRs). Previous research incorporated only some ultrasonic wave parameters, and the other information from the ultrasonic signals was discarded. In this work, 13 features, including wave velocity and wavelet features, were extracted from the ultrasonic signals. A curve-fitting method was used to fit a polynomial relationship between the wave velocity and expansion of one concrete sample subjected to ASR to predict the expansion of another concrete sample subjected to ASR. Support vector regression (SVR), a machine learning model, was trained using all 13 features derived from the ultrasonic data obtained from the ASR samples. The SVR was then tested using the datasets from the ASR-2D sample. The performance showed that the curve-fitting method and the SVR had poor prediction results on the expansion of the ASR-2D sample. With feature selection, the performance of the SVR model using six selected features was significantly improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信