基于反应扩散系统的神经动力学视网膜网络

M. Keil, G. Cristóbal, H. Neumann
{"title":"基于反应扩散系统的神经动力学视网膜网络","authors":"M. Keil, G. Cristóbal, H. Neumann","doi":"10.1109/ICIAP.2001.957010","DOIUrl":null,"url":null,"abstract":"A dynamical model for retinal processing is presented. The model describes the output of retinal ganglion cells whose receptive field is composed of a center and a surround combining linearly. However, in comparison to the classical difference-of-Gaussian (DOG) model, center and surround are generated in two separate layers of reaction-diffusion systems, through a difference in the speed of activity-propagation between both layers. Thus, intra-layer coupling is based exclusively on next-neighbor interactions. This makes the model suitable for VLSI implementation. Furthermore, the layers are connected by equations with feedback-inhibition to form ON-center/OFF-surround and OFF-center/OFF-surround receptive fields. The model's output in the early dynamics corresponds to high-resolution contrast information, whereas the output at later times can be considered as correlated with local brightness and darkness, respectively. To examine this in more detail, simulations with the Hermann/Hering-grid and grating induction were carried out.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A neurodynamical retinal network based on reaction-diffusion systems\",\"authors\":\"M. Keil, G. Cristóbal, H. Neumann\",\"doi\":\"10.1109/ICIAP.2001.957010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dynamical model for retinal processing is presented. The model describes the output of retinal ganglion cells whose receptive field is composed of a center and a surround combining linearly. However, in comparison to the classical difference-of-Gaussian (DOG) model, center and surround are generated in two separate layers of reaction-diffusion systems, through a difference in the speed of activity-propagation between both layers. Thus, intra-layer coupling is based exclusively on next-neighbor interactions. This makes the model suitable for VLSI implementation. Furthermore, the layers are connected by equations with feedback-inhibition to form ON-center/OFF-surround and OFF-center/OFF-surround receptive fields. The model's output in the early dynamics corresponds to high-resolution contrast information, whereas the output at later times can be considered as correlated with local brightness and darkness, respectively. To examine this in more detail, simulations with the Hermann/Hering-grid and grating induction were carried out.\",\"PeriodicalId\":365627,\"journal\":{\"name\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2001.957010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.957010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种视网膜加工的动力学模型。该模型描述了接受野由中心和周围线性组合而成的视网膜神经节细胞的输出。然而,与经典的高斯差分(DOG)模型相比,中心和环绕是通过两层之间活动传播速度的差异在反应扩散系统的两个独立层中产生的。因此,层内耦合完全基于相邻交互。这使得该模型适合VLSI的实现。此外,通过反馈抑制方程将各层连接起来,形成ON-center/OFF-surround和OFF-center/OFF-surround感受场。模型的早期动态输出对应于高分辨率对比度信息,而后期的输出可以被认为分别与局部亮度和黑暗相关。为了更详细地验证这一点,使用Hermann/ hering网格和光栅感应进行了模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neurodynamical retinal network based on reaction-diffusion systems
A dynamical model for retinal processing is presented. The model describes the output of retinal ganglion cells whose receptive field is composed of a center and a surround combining linearly. However, in comparison to the classical difference-of-Gaussian (DOG) model, center and surround are generated in two separate layers of reaction-diffusion systems, through a difference in the speed of activity-propagation between both layers. Thus, intra-layer coupling is based exclusively on next-neighbor interactions. This makes the model suitable for VLSI implementation. Furthermore, the layers are connected by equations with feedback-inhibition to form ON-center/OFF-surround and OFF-center/OFF-surround receptive fields. The model's output in the early dynamics corresponds to high-resolution contrast information, whereas the output at later times can be considered as correlated with local brightness and darkness, respectively. To examine this in more detail, simulations with the Hermann/Hering-grid and grating induction were carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信