基于邻域差异排序的旋转不变纹理特征提取

K. Saipullah, Deok‐Hwan Kim, Seok-Lyong Lee
{"title":"基于邻域差异排序的旋转不变纹理特征提取","authors":"K. Saipullah, Deok‐Hwan Kim, Seok-Lyong Lee","doi":"10.1109/ICME.2011.6011907","DOIUrl":null,"url":null,"abstract":"Rotation invariant texture descriptor plays an important role in texture-based object classification. However the classification accuracy may decrease due to the inconsistent performance of texture descriptor with respect to various rotated angles. In this paper we propose a consistent rotation invariant texture descriptor named Sorted Neighborhood Differences (SND). SND is derived from the integration of sorted neigh- borhood and binary patterns. Experimental results show that overall texture classification accuracy of SND with respect to different rotations using OUTEX TC 0010 texture database is 91.81% whereas those of LBPriu and LBP-HF are 86.42% and 88.28%, respectively. The texture and coin classification accuracies of SND are also consistent in various rotation angles and illumination levels.","PeriodicalId":433997,"journal":{"name":"2011 IEEE International Conference on Multimedia and Expo","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Rotation invariant texture feature extraction based on Sorted Neighborhood Differences\",\"authors\":\"K. Saipullah, Deok‐Hwan Kim, Seok-Lyong Lee\",\"doi\":\"10.1109/ICME.2011.6011907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rotation invariant texture descriptor plays an important role in texture-based object classification. However the classification accuracy may decrease due to the inconsistent performance of texture descriptor with respect to various rotated angles. In this paper we propose a consistent rotation invariant texture descriptor named Sorted Neighborhood Differences (SND). SND is derived from the integration of sorted neigh- borhood and binary patterns. Experimental results show that overall texture classification accuracy of SND with respect to different rotations using OUTEX TC 0010 texture database is 91.81% whereas those of LBPriu and LBP-HF are 86.42% and 88.28%, respectively. The texture and coin classification accuracies of SND are also consistent in various rotation angles and illumination levels.\",\"PeriodicalId\":433997,\"journal\":{\"name\":\"2011 IEEE International Conference on Multimedia and Expo\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2011.6011907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2011.6011907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

旋转不变纹理描述子在基于纹理的目标分类中起着重要的作用。然而,由于纹理描述子在不同旋转角度下的性能不一致,分类精度可能会降低。本文提出了一种一致旋转不变性纹理描述符,命名为有序邻域差异(SND)。SND是由排序邻域和二元模式的整合而来的。实验结果表明,使用OUTEX TC 0010纹理数据库对不同旋转下SND的总体纹理分类准确率为91.81%,而LBPriu和LBP-HF的分类准确率分别为86.42%和88.28%。SND的纹理和硬币分类精度在不同的旋转角度和光照水平下也是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rotation invariant texture feature extraction based on Sorted Neighborhood Differences
Rotation invariant texture descriptor plays an important role in texture-based object classification. However the classification accuracy may decrease due to the inconsistent performance of texture descriptor with respect to various rotated angles. In this paper we propose a consistent rotation invariant texture descriptor named Sorted Neighborhood Differences (SND). SND is derived from the integration of sorted neigh- borhood and binary patterns. Experimental results show that overall texture classification accuracy of SND with respect to different rotations using OUTEX TC 0010 texture database is 91.81% whereas those of LBPriu and LBP-HF are 86.42% and 88.28%, respectively. The texture and coin classification accuracies of SND are also consistent in various rotation angles and illumination levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信