NISQ设备的公平抽样误差分析

John K. Golden, Andreas Bärtschi, Daniel O’Malley, S. Eidenbenz
{"title":"NISQ设备的公平抽样误差分析","authors":"John K. Golden, Andreas Bärtschi, Daniel O’Malley, S. Eidenbenz","doi":"10.1145/3510857","DOIUrl":null,"url":null,"abstract":"We study the status of fair sampling on Noisy Intermediate Scale Quantum (NISQ) devices, in particular the IBM Q family of backends. Using the recently introduced Grover Mixer-QAOA algorithm for discrete optimization, we generate fair sampling circuits to solve six problems of varying difficulty, each with several optimal solutions, which we then run on twenty backends across the IBM Q system. For a given circuit evaluated on a specific set of qubits, we evaluate: how frequently the qubits return an optimal solution to the problem, the fairness with which the qubits sample from all optimal solutions, and the reported hardware error rate of the qubits. To quantify fairness, we define a novel metric based on Pearson’s χ2 test. We find that fairness is relatively high for circuits with small and large error rates, but drops for circuits with medium error rates. This indicates that structured errors dominate in this regime, while unstructured errors, which are random and thus inherently fair, dominate in noisier qubits and longer circuits. Our results show that fairness can be a powerful tool for understanding the intricate web of errors affecting current NISQ hardware.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fair Sampling Error Analysis on NISQ Devices\",\"authors\":\"John K. Golden, Andreas Bärtschi, Daniel O’Malley, S. Eidenbenz\",\"doi\":\"10.1145/3510857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the status of fair sampling on Noisy Intermediate Scale Quantum (NISQ) devices, in particular the IBM Q family of backends. Using the recently introduced Grover Mixer-QAOA algorithm for discrete optimization, we generate fair sampling circuits to solve six problems of varying difficulty, each with several optimal solutions, which we then run on twenty backends across the IBM Q system. For a given circuit evaluated on a specific set of qubits, we evaluate: how frequently the qubits return an optimal solution to the problem, the fairness with which the qubits sample from all optimal solutions, and the reported hardware error rate of the qubits. To quantify fairness, we define a novel metric based on Pearson’s χ2 test. We find that fairness is relatively high for circuits with small and large error rates, but drops for circuits with medium error rates. This indicates that structured errors dominate in this regime, while unstructured errors, which are random and thus inherently fair, dominate in noisier qubits and longer circuits. Our results show that fairness can be a powerful tool for understanding the intricate web of errors affecting current NISQ hardware.\",\"PeriodicalId\":365166,\"journal\":{\"name\":\"ACM Transactions on Quantum Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Quantum Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了噪声中尺度量子(NISQ)器件,特别是IBM Q系列后端器件上公平采样的现状。使用最近引入的Grover Mixer-QAOA算法进行离散优化,我们生成公平采样电路来解决六个不同难度的问题,每个问题都有几个最优解,然后我们在IBM Q系统的20个后端上运行。对于在特定量子比特集上评估的给定电路,我们评估:量子比特返回问题最佳解决方案的频率,量子比特从所有最优解决方案中采样的公平性,以及量子比特报告的硬件错误率。为了量化公平,我们定义了一个基于皮尔逊χ2检验的新指标。我们发现,对于小错误率和大错误率的电路,公平性相对较高,但对于中等错误率的电路,公平性下降。这表明结构化错误在这一体系中占主导地位,而非结构化错误在更嘈杂的量子比特和更长的电路中占主导地位,而非结构化错误是随机的,因此本质上是公平的。我们的结果表明,公平性可以成为理解影响当前NISQ硬件的复杂错误网络的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fair Sampling Error Analysis on NISQ Devices
We study the status of fair sampling on Noisy Intermediate Scale Quantum (NISQ) devices, in particular the IBM Q family of backends. Using the recently introduced Grover Mixer-QAOA algorithm for discrete optimization, we generate fair sampling circuits to solve six problems of varying difficulty, each with several optimal solutions, which we then run on twenty backends across the IBM Q system. For a given circuit evaluated on a specific set of qubits, we evaluate: how frequently the qubits return an optimal solution to the problem, the fairness with which the qubits sample from all optimal solutions, and the reported hardware error rate of the qubits. To quantify fairness, we define a novel metric based on Pearson’s χ2 test. We find that fairness is relatively high for circuits with small and large error rates, but drops for circuits with medium error rates. This indicates that structured errors dominate in this regime, while unstructured errors, which are random and thus inherently fair, dominate in noisier qubits and longer circuits. Our results show that fairness can be a powerful tool for understanding the intricate web of errors affecting current NISQ hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信