具有备份信息源的平均信息年龄

Elvina Gindullina, L. Badia, Deniz Gündüz
{"title":"具有备份信息源的平均信息年龄","authors":"Elvina Gindullina, L. Badia, Deniz Gündüz","doi":"10.1109/PIMRC.2019.8904450","DOIUrl":null,"url":null,"abstract":"Data collected and transmitted by Internet of things (IoT) devices are typically used for control and monitoring purposes; and hence, their timely delivery is of utmost importance for the underlying applications. However, IoT devices operate with very limited energy sources, severely reducing their ability for timely collection and processing of status updates. IoT systems make up for these limitations by employing multiple low-power low-complexity devices that can monitor the same signal, possibly with different quality observations and different energy costs, to create diversity against the limitations of individual nodes. We investigate policies to minimize the average age of information (AoI) in a monitoring system that collects data from two sources of information denoted as primary and backup sources, respectively. We assume that each source offers a different trade-off between the AoI and the energy cost. The monitoring node is equipped with a finite size battery and harvests ambient energy. For this setup, we formulate the scheduling of status updates from the two sources as a Markov decision process (MDP), and obtain a policy that decides on the optimal action to take (i.e., which source to query or remain idle) depending on the current energy level and AoI. The performance of the obtained policy is compared with an aggressive policy for different system parameters. We identify few types of optimal solution structures and discuss the benefits of having a backup source of information in the system.","PeriodicalId":412182,"journal":{"name":"2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Average Age-of-Information with a Backup Information Source\",\"authors\":\"Elvina Gindullina, L. Badia, Deniz Gündüz\",\"doi\":\"10.1109/PIMRC.2019.8904450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data collected and transmitted by Internet of things (IoT) devices are typically used for control and monitoring purposes; and hence, their timely delivery is of utmost importance for the underlying applications. However, IoT devices operate with very limited energy sources, severely reducing their ability for timely collection and processing of status updates. IoT systems make up for these limitations by employing multiple low-power low-complexity devices that can monitor the same signal, possibly with different quality observations and different energy costs, to create diversity against the limitations of individual nodes. We investigate policies to minimize the average age of information (AoI) in a monitoring system that collects data from two sources of information denoted as primary and backup sources, respectively. We assume that each source offers a different trade-off between the AoI and the energy cost. The monitoring node is equipped with a finite size battery and harvests ambient energy. For this setup, we formulate the scheduling of status updates from the two sources as a Markov decision process (MDP), and obtain a policy that decides on the optimal action to take (i.e., which source to query or remain idle) depending on the current energy level and AoI. The performance of the obtained policy is compared with an aggressive policy for different system parameters. We identify few types of optimal solution structures and discuss the benefits of having a backup source of information in the system.\",\"PeriodicalId\":412182,\"journal\":{\"name\":\"2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC.2019.8904450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2019.8904450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

物联网(IoT)设备收集和传输的数据通常用于控制和监测目的;因此,它们的及时交付对于底层应用程序至关重要。然而,物联网设备的能源非常有限,严重降低了它们及时收集和处理状态更新的能力。物联网系统通过采用多个低功耗低复杂性设备来弥补这些限制,这些设备可以监控相同的信号,可能具有不同的质量观察和不同的能源成本,以创建针对单个节点限制的多样性。我们研究了在监测系统中最小化信息平均年龄(AoI)的策略,该系统分别从两个信息源收集数据,分别表示为主要和备份源。我们假设每种能源在AoI和能源成本之间提供了不同的权衡。监测节点配备了一个有限大小的电池,并收集周围的能量。对于这种设置,我们将两个源的状态更新调度制定为马尔可夫决策过程(MDP),并获得一个策略,该策略根据当前能量水平和AoI决定要采取的最佳操作(即,查询哪个源或保持空闲)。在不同的系统参数下,将得到的策略的性能与主动策略进行比较。我们确定了几种类型的最优解决方案结构,并讨论了在系统中拥有备份信息源的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Average Age-of-Information with a Backup Information Source
Data collected and transmitted by Internet of things (IoT) devices are typically used for control and monitoring purposes; and hence, their timely delivery is of utmost importance for the underlying applications. However, IoT devices operate with very limited energy sources, severely reducing their ability for timely collection and processing of status updates. IoT systems make up for these limitations by employing multiple low-power low-complexity devices that can monitor the same signal, possibly with different quality observations and different energy costs, to create diversity against the limitations of individual nodes. We investigate policies to minimize the average age of information (AoI) in a monitoring system that collects data from two sources of information denoted as primary and backup sources, respectively. We assume that each source offers a different trade-off between the AoI and the energy cost. The monitoring node is equipped with a finite size battery and harvests ambient energy. For this setup, we formulate the scheduling of status updates from the two sources as a Markov decision process (MDP), and obtain a policy that decides on the optimal action to take (i.e., which source to query or remain idle) depending on the current energy level and AoI. The performance of the obtained policy is compared with an aggressive policy for different system parameters. We identify few types of optimal solution structures and discuss the benefits of having a backup source of information in the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信