gpu上脉冲神经网络多类仿真的可扩展性

Israel Tabarez Paz, N. Hernández-Gress, M. González-Mendoza, David González-Marrón
{"title":"gpu上脉冲神经网络多类仿真的可扩展性","authors":"Israel Tabarez Paz, N. Hernández-Gress, M. González-Mendoza, David González-Marrón","doi":"10.1109/MICAI.2014.21","DOIUrl":null,"url":null,"abstract":"This manuscript is focused on scalability of Spiking Neural Network (SNN) for acceleration of its learning time. Simulation of SNN algorithm was implemented on GPUs devices Ge Force 9400M and Ge Force650 GTX in order to compare the learning time. Multiclass database are used for classification and the results are compared.","PeriodicalId":189896,"journal":{"name":"2014 13th Mexican International Conference on Artificial Intelligence","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalability of Multiclass Simulation of Spiking Neural Networks on GPUs\",\"authors\":\"Israel Tabarez Paz, N. Hernández-Gress, M. González-Mendoza, David González-Marrón\",\"doi\":\"10.1109/MICAI.2014.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This manuscript is focused on scalability of Spiking Neural Network (SNN) for acceleration of its learning time. Simulation of SNN algorithm was implemented on GPUs devices Ge Force 9400M and Ge Force650 GTX in order to compare the learning time. Multiclass database are used for classification and the results are compared.\",\"PeriodicalId\":189896,\"journal\":{\"name\":\"2014 13th Mexican International Conference on Artificial Intelligence\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 13th Mexican International Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI.2014.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 13th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2014.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究了尖峰神经网络(SNN)在加速其学习时间方面的可扩展性。在gpu设备Ge Force 9400M和Ge Force650 GTX上对SNN算法进行仿真,比较学习时间。采用多类数据库进行分类,并对分类结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalability of Multiclass Simulation of Spiking Neural Networks on GPUs
This manuscript is focused on scalability of Spiking Neural Network (SNN) for acceleration of its learning time. Simulation of SNN algorithm was implemented on GPUs devices Ge Force 9400M and Ge Force650 GTX in order to compare the learning time. Multiclass database are used for classification and the results are compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信