在一般信道和一般解码度量上的可达界和逆界

Nir Elkayam, M. Feder
{"title":"在一般信道和一般解码度量上的可达界和逆界","authors":"Nir Elkayam, M. Feder","doi":"10.1109/ITW.2015.7133137","DOIUrl":null,"url":null,"abstract":"Achievable and converse bounds for general channels and mismatched decoding are derived. The direct (achievable) bound is derived using random coding and the analysis is tight up to factor 2. The converse is given in term of the achievable bound and the factor between them is given. This gives performance of the best rate-R code with possible mismatched decoding metric over a general channel, up to the factor that is identified. In the matched case we show that the converse equals the minimax meta-converse of Polyanskiy et al. [1].","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Achievable and converse bounds over a general channel and general decoding metric\",\"authors\":\"Nir Elkayam, M. Feder\",\"doi\":\"10.1109/ITW.2015.7133137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achievable and converse bounds for general channels and mismatched decoding are derived. The direct (achievable) bound is derived using random coding and the analysis is tight up to factor 2. The converse is given in term of the achievable bound and the factor between them is given. This gives performance of the best rate-R code with possible mismatched decoding metric over a general channel, up to the factor that is identified. In the matched case we show that the converse equals the minimax meta-converse of Polyanskiy et al. [1].\",\"PeriodicalId\":174797,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop (ITW)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2015.7133137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

推导了一般信道和不匹配解码的可达界和逆界。直接(可实现)界是使用随机编码导出的,分析紧密到因子2。用可达界的形式给出了逆函数,并给出了它们之间的因子。这提供了最佳的rate-R码的性能,在一般信道上可能存在不匹配的解码度量,直到确定的因素。在匹配情况下,我们证明了逆等于Polyanskiy等人[1]的极小极大元逆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Achievable and converse bounds over a general channel and general decoding metric
Achievable and converse bounds for general channels and mismatched decoding are derived. The direct (achievable) bound is derived using random coding and the analysis is tight up to factor 2. The converse is given in term of the achievable bound and the factor between them is given. This gives performance of the best rate-R code with possible mismatched decoding metric over a general channel, up to the factor that is identified. In the matched case we show that the converse equals the minimax meta-converse of Polyanskiy et al. [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信