利用信道预测进行空时码选择

T. D. Mavares, Reinaldo Velásquez, Keila Candotti, Monica Huerta
{"title":"利用信道预测进行空时码选择","authors":"T. D. Mavares, Reinaldo Velásquez, Keila Candotti, Monica Huerta","doi":"10.1109/APCASE.2015.55","DOIUrl":null,"url":null,"abstract":"A channel prediction based space-time code selection technique for multiple input-single output systems is proposed. This transmit antenna diversity technique selects both the space-time code and the number of transmitter antennas using estimated and predicted channel state information. Linear channel prediction, designed to be optimal in the mean-square sense, has been used. Simulation results show that the proposed technique achieve SNR gains up to 2dB at high SNRs and high mobile speed.","PeriodicalId":235698,"journal":{"name":"2015 Asia-Pacific Conference on Computer Aided System Engineering","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Space-Time Code Selection Using Channel Prediction\",\"authors\":\"T. D. Mavares, Reinaldo Velásquez, Keila Candotti, Monica Huerta\",\"doi\":\"10.1109/APCASE.2015.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A channel prediction based space-time code selection technique for multiple input-single output systems is proposed. This transmit antenna diversity technique selects both the space-time code and the number of transmitter antennas using estimated and predicted channel state information. Linear channel prediction, designed to be optimal in the mean-square sense, has been used. Simulation results show that the proposed technique achieve SNR gains up to 2dB at high SNRs and high mobile speed.\",\"PeriodicalId\":235698,\"journal\":{\"name\":\"2015 Asia-Pacific Conference on Computer Aided System Engineering\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Asia-Pacific Conference on Computer Aided System Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCASE.2015.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Asia-Pacific Conference on Computer Aided System Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCASE.2015.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于信道预测的多输入单输出系统空时码选择技术。这种发射天线分集技术利用估计和预测的信道状态信息来选择空时码和发射天线的个数。采用了在均方意义上最优的线性信道预测。仿真结果表明,在高信噪比和高移动速度下,该技术的信噪比增益可达2dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space-Time Code Selection Using Channel Prediction
A channel prediction based space-time code selection technique for multiple input-single output systems is proposed. This transmit antenna diversity technique selects both the space-time code and the number of transmitter antennas using estimated and predicted channel state information. Linear channel prediction, designed to be optimal in the mean-square sense, has been used. Simulation results show that the proposed technique achieve SNR gains up to 2dB at high SNRs and high mobile speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信