延迟敏感的数据流重新配置

Moritz Hoffmann, Frank McSherry, Andrea Lattuada
{"title":"延迟敏感的数据流重新配置","authors":"Moritz Hoffmann, Frank McSherry, Andrea Lattuada","doi":"10.1145/3206333.3206334","DOIUrl":null,"url":null,"abstract":"We propose a prototype incremental data migration mechanism for stateful distributed data-parallel dataflow engines with latency objectives. When compared to existing scaling mechanisms, our prototype has the following differentiating characteristics: (i) the mechanism provides tunable granularity for avoiding latency spikes, (ii) reconfigurations can be prepared ahead of time to avoid runtime coordination, and (iii) the implementation only relies on existing dataflow APIs and need not require system modifications. We demonstrate our proposal on example computations with varying amounts of state that needs to be migrated, which is a non-trivial task for systems like Dhalion and Flink. Our implementation, prototyped on Timely Dataflow, provides a scalable stateful operator template compatible with existing APIs that carefully reorganizes data to minimize migration overhead. Compared to naïve approaches we reduce service latencies by orders of magnitude.","PeriodicalId":253916,"journal":{"name":"Proceedings of the 5th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Latency-conscious dataflow reconfiguration\",\"authors\":\"Moritz Hoffmann, Frank McSherry, Andrea Lattuada\",\"doi\":\"10.1145/3206333.3206334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a prototype incremental data migration mechanism for stateful distributed data-parallel dataflow engines with latency objectives. When compared to existing scaling mechanisms, our prototype has the following differentiating characteristics: (i) the mechanism provides tunable granularity for avoiding latency spikes, (ii) reconfigurations can be prepared ahead of time to avoid runtime coordination, and (iii) the implementation only relies on existing dataflow APIs and need not require system modifications. We demonstrate our proposal on example computations with varying amounts of state that needs to be migrated, which is a non-trivial task for systems like Dhalion and Flink. Our implementation, prototyped on Timely Dataflow, provides a scalable stateful operator template compatible with existing APIs that carefully reorganizes data to minimize migration overhead. Compared to naïve approaches we reduce service latencies by orders of magnitude.\",\"PeriodicalId\":253916,\"journal\":{\"name\":\"Proceedings of the 5th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3206333.3206334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206333.3206334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种具有延迟目标的有状态分布式并行数据流引擎的增量数据迁移机制原型。与现有的扩展机制相比,我们的原型具有以下区别特征:(i)该机制提供可调粒度以避免延迟峰值,(ii)可以提前准备重新配置以避免运行时协调,(iii)实现仅依赖于现有的数据流api,不需要系统修改。我们通过需要迁移不同数量状态的示例计算来演示我们的建议,这对于像Dhalion和Flink这样的系统来说是一项非常重要的任务。我们的实现以及时数据流为原型,提供了一个可扩展的有状态操作符模板,该模板与现有api兼容,可以仔细地重组数据,以最大限度地减少迁移开销。与naïve方法相比,我们将服务延迟降低了几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latency-conscious dataflow reconfiguration
We propose a prototype incremental data migration mechanism for stateful distributed data-parallel dataflow engines with latency objectives. When compared to existing scaling mechanisms, our prototype has the following differentiating characteristics: (i) the mechanism provides tunable granularity for avoiding latency spikes, (ii) reconfigurations can be prepared ahead of time to avoid runtime coordination, and (iii) the implementation only relies on existing dataflow APIs and need not require system modifications. We demonstrate our proposal on example computations with varying amounts of state that needs to be migrated, which is a non-trivial task for systems like Dhalion and Flink. Our implementation, prototyped on Timely Dataflow, provides a scalable stateful operator template compatible with existing APIs that carefully reorganizes data to minimize migration overhead. Compared to naïve approaches we reduce service latencies by orders of magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信