一个计算行列式的方法,用计算机算法解释

A. Salihu, Fatlinda Salihu
{"title":"一个计算行列式的方法,用计算机算法解释","authors":"A. Salihu, Fatlinda Salihu","doi":"10.33107/UBT-IC.2018.79","DOIUrl":null,"url":null,"abstract":"In this paper we present the new algorithm to calculate determinants of nth order using Rezaifar's method of reducing the order of determinants to second order. We have implemented the Dodgson's algorithm within Rezaifar's method to calculate sub matrices and developed a new method. Within the paper we have also developed the computer algorithm to calculate the determinant using this new method. While comparing the computer execution time with the Rezaifar's method, we have seen that this new algorithm presented is executed faster.","PeriodicalId":276348,"journal":{"name":"2018 UBT International Conference","volume":"385 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A method to calculate determinants, with computer algorithm interpretation\",\"authors\":\"A. Salihu, Fatlinda Salihu\",\"doi\":\"10.33107/UBT-IC.2018.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present the new algorithm to calculate determinants of nth order using Rezaifar's method of reducing the order of determinants to second order. We have implemented the Dodgson's algorithm within Rezaifar's method to calculate sub matrices and developed a new method. Within the paper we have also developed the computer algorithm to calculate the determinant using this new method. While comparing the computer execution time with the Rezaifar's method, we have seen that this new algorithm presented is executed faster.\",\"PeriodicalId\":276348,\"journal\":{\"name\":\"2018 UBT International Conference\",\"volume\":\"385 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 UBT International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33107/UBT-IC.2018.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 UBT International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33107/UBT-IC.2018.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用Rezaifar的将行列式降阶为二阶的方法,提出了计算n阶行列式的新算法。我们在Rezaifar的方法中实现了Dodgson算法来计算子矩阵,并开发了一种新的方法。在本文中,我们还开发了用这种新方法计算行列式的计算机算法。通过与Rezaifar方法的计算机执行时间比较,我们可以看到,新算法的执行速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method to calculate determinants, with computer algorithm interpretation
In this paper we present the new algorithm to calculate determinants of nth order using Rezaifar's method of reducing the order of determinants to second order. We have implemented the Dodgson's algorithm within Rezaifar's method to calculate sub matrices and developed a new method. Within the paper we have also developed the computer algorithm to calculate the determinant using this new method. While comparing the computer execution time with the Rezaifar's method, we have seen that this new algorithm presented is executed faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信