一种用于多目标识别的混合神经网络/知识库系统

P. Gonsalves, A. Caglayan
{"title":"一种用于多目标识别的混合神经网络/知识库系统","authors":"P. Gonsalves, A. Caglayan","doi":"10.1109/OCEANS.1992.612660","DOIUrl":null,"url":null,"abstract":"In this paper, we present a hybrid artificial neural network (ANN)/knowledge base (KB) system for multi-target recognition (MTR). Specifically, we develop a hybrid MTR archi- tecture composed of ANNand KB classifiers and decision makers, and conventionalsignal processing and probabilistic target track- ing algorithms. Our approach centerson the use of both the on-line classification and parallel processing of neural networks and the formal knowledge and reasoning of domain experts.","PeriodicalId":158109,"journal":{"name":"OCEANS 92 Proceedings@m_Mastering the Oceans Through Technology","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Neural Network/knowledge Base System For Multi-Target Recognition\",\"authors\":\"P. Gonsalves, A. Caglayan\",\"doi\":\"10.1109/OCEANS.1992.612660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a hybrid artificial neural network (ANN)/knowledge base (KB) system for multi-target recognition (MTR). Specifically, we develop a hybrid MTR archi- tecture composed of ANNand KB classifiers and decision makers, and conventionalsignal processing and probabilistic target track- ing algorithms. Our approach centerson the use of both the on-line classification and parallel processing of neural networks and the formal knowledge and reasoning of domain experts.\",\"PeriodicalId\":158109,\"journal\":{\"name\":\"OCEANS 92 Proceedings@m_Mastering the Oceans Through Technology\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 92 Proceedings@m_Mastering the Oceans Through Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.1992.612660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 92 Proceedings@m_Mastering the Oceans Through Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.1992.612660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于多目标识别的人工神经网络/知识库混合系统。具体而言,我们开发了一种混合MTR架构,该架构由ANNand KB分类器和决策者以及传统的信号处理和概率目标跟踪算法组成。我们的方法集中于使用神经网络的在线分类和并行处理以及领域专家的形式知识和推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Neural Network/knowledge Base System For Multi-Target Recognition
In this paper, we present a hybrid artificial neural network (ANN)/knowledge base (KB) system for multi-target recognition (MTR). Specifically, we develop a hybrid MTR archi- tecture composed of ANNand KB classifiers and decision makers, and conventionalsignal processing and probabilistic target track- ing algorithms. Our approach centerson the use of both the on-line classification and parallel processing of neural networks and the formal knowledge and reasoning of domain experts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信