基于字典的形状和空间变化反射率估计方法

Zhuo Hui, Aswin C. Sankaranarayanan
{"title":"基于字典的形状和空间变化反射率估计方法","authors":"Zhuo Hui, Aswin C. Sankaranarayanan","doi":"10.1109/ICCPHOT.2015.7168363","DOIUrl":null,"url":null,"abstract":"We present a technique for estimating the shape and reflectance of an object in terms of its surface normals and spatially-varying BRDF. We assume that multiple images of the object are obtained under fixed view-point and varying illumination, i.e, the setting of photometric stereo. Assuming that the BRDF at each pixel lies in the non-negative span of a known BRDF dictionary, we derive a per-pixel surface normal and BRDF estimation framework that requires neither iterative optimization techniques nor careful initialization, both of which are endemic to most state-of the-art techniques. We showcase the performance of our technique on a wide range of simulated and real scenes where we outperform competing methods.","PeriodicalId":302766,"journal":{"name":"2015 IEEE International Conference on Computational Photography (ICCP)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A Dictionary-Based Approach for Estimating Shape and Spatially-Varying Reflectance\",\"authors\":\"Zhuo Hui, Aswin C. Sankaranarayanan\",\"doi\":\"10.1109/ICCPHOT.2015.7168363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a technique for estimating the shape and reflectance of an object in terms of its surface normals and spatially-varying BRDF. We assume that multiple images of the object are obtained under fixed view-point and varying illumination, i.e, the setting of photometric stereo. Assuming that the BRDF at each pixel lies in the non-negative span of a known BRDF dictionary, we derive a per-pixel surface normal and BRDF estimation framework that requires neither iterative optimization techniques nor careful initialization, both of which are endemic to most state-of the-art techniques. We showcase the performance of our technique on a wide range of simulated and real scenes where we outperform competing methods.\",\"PeriodicalId\":302766,\"journal\":{\"name\":\"2015 IEEE International Conference on Computational Photography (ICCP)\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computational Photography (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPHOT.2015.7168363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPHOT.2015.7168363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

我们提出了一种估计物体形状和反射率的技术,根据其表面法线和空间变化的BRDF。我们假设物体在固定视点和不同照度下获得多幅图像,即光度立体的设置。假设每个像素处的BRDF位于已知BRDF字典的非负跨度中,我们推导出一个每个像素的表面法线和BRDF估计框架,该框架既不需要迭代优化技术,也不需要仔细初始化,这两者都是大多数最新技术所特有的。我们在广泛的模拟和真实场景中展示了我们的技术性能,在这些场景中我们优于竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dictionary-Based Approach for Estimating Shape and Spatially-Varying Reflectance
We present a technique for estimating the shape and reflectance of an object in terms of its surface normals and spatially-varying BRDF. We assume that multiple images of the object are obtained under fixed view-point and varying illumination, i.e, the setting of photometric stereo. Assuming that the BRDF at each pixel lies in the non-negative span of a known BRDF dictionary, we derive a per-pixel surface normal and BRDF estimation framework that requires neither iterative optimization techniques nor careful initialization, both of which are endemic to most state-of the-art techniques. We showcase the performance of our technique on a wide range of simulated and real scenes where we outperform competing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信