用于复制模式决策的文档分类

S. Kim, S. Youn, S. Baek, Chulhee Lee
{"title":"用于复制模式决策的文档分类","authors":"S. Kim, S. Youn, S. Baek, Chulhee Lee","doi":"10.1109/GCCE.2015.7398714","DOIUrl":null,"url":null,"abstract":"We proposed a low-complexity document classification algorithm to select copy mode. The goal is to select a suitable copy mode during copying process. We first analyzed scanned images and classified them into three modes: text, image, mixed modes. To classify images, we used several features, which include pixel density with low brightness, edge length and text line components. Experimental results showed that the proposed algorithm provided about 95% classification accuracy.","PeriodicalId":363743,"journal":{"name":"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)","volume":"315 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Document classification for copy-mode decision\",\"authors\":\"S. Kim, S. Youn, S. Baek, Chulhee Lee\",\"doi\":\"10.1109/GCCE.2015.7398714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed a low-complexity document classification algorithm to select copy mode. The goal is to select a suitable copy mode during copying process. We first analyzed scanned images and classified them into three modes: text, image, mixed modes. To classify images, we used several features, which include pixel density with low brightness, edge length and text line components. Experimental results showed that the proposed algorithm provided about 95% classification accuracy.\",\"PeriodicalId\":363743,\"journal\":{\"name\":\"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)\",\"volume\":\"315 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCCE.2015.7398714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2015.7398714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种低复杂度的文档分类算法来选择复制模式。目标是在复制过程中选择合适的复制模式。我们首先对扫描图像进行分析,并将其分为三种模式:文本模式、图像模式和混合模式。为了对图像进行分类,我们使用了几个特征,包括低亮度的像素密度、边缘长度和文本线组件。实验结果表明,该算法的分类准确率约为95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Document classification for copy-mode decision
We proposed a low-complexity document classification algorithm to select copy mode. The goal is to select a suitable copy mode during copying process. We first analyzed scanned images and classified them into three modes: text, image, mixed modes. To classify images, we used several features, which include pixel density with low brightness, edge length and text line components. Experimental results showed that the proposed algorithm provided about 95% classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信