{"title":"增强薄膜太阳能电池吸收的金属纳米结构","authors":"F. Armin, M. Mirsalehi","doi":"10.1109/IRANIANCEE.2013.6599796","DOIUrl":null,"url":null,"abstract":"In this paper, a novel structure is proposed to enhance the absorption of light in thin-film solar cells by surface plasmons excited on metallic nano-rods. The excitation of surface plasmons on these nano-rods that are implemented in amorphous hydrogenated silicon is realized by a two-dimensional array of metallic nanoparticles. This array, which consists of nonresonant plasmonic nanoparticles, can be mounted on the anti-reflection coating of the solar cells.","PeriodicalId":383315,"journal":{"name":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metallic nanostructures for enhancement of absorption in thin-film solar cells\",\"authors\":\"F. Armin, M. Mirsalehi\",\"doi\":\"10.1109/IRANIANCEE.2013.6599796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel structure is proposed to enhance the absorption of light in thin-film solar cells by surface plasmons excited on metallic nano-rods. The excitation of surface plasmons on these nano-rods that are implemented in amorphous hydrogenated silicon is realized by a two-dimensional array of metallic nanoparticles. This array, which consists of nonresonant plasmonic nanoparticles, can be mounted on the anti-reflection coating of the solar cells.\",\"PeriodicalId\":383315,\"journal\":{\"name\":\"2013 21st Iranian Conference on Electrical Engineering (ICEE)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 21st Iranian Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2013.6599796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2013.6599796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Metallic nanostructures for enhancement of absorption in thin-film solar cells
In this paper, a novel structure is proposed to enhance the absorption of light in thin-film solar cells by surface plasmons excited on metallic nano-rods. The excitation of surface plasmons on these nano-rods that are implemented in amorphous hydrogenated silicon is realized by a two-dimensional array of metallic nanoparticles. This array, which consists of nonresonant plasmonic nanoparticles, can be mounted on the anti-reflection coating of the solar cells.