{"title":"基于行为、材料和组件的专利数据库结构表示支持类比灵感探索的方法","authors":"H. Song, Katherine K. Fu","doi":"10.1115/DETC2018-85591","DOIUrl":null,"url":null,"abstract":"This paper presents an explorative-based computational methodology to aid the analogical retrieval process in design-by-analogy practice. The computational methodology, driven by Non-negative Matrix Factorization (NMF), iteratively builds a hierarchical repositories of design solutions within which clusters of design analogies can be explored by designers. In the work, the methodology has been applied on a large repository of mechanical design related patents, processed to contain only component-, behavior-, or material-based content, to demonstrate that unique and valuable attribute-based analogical inspiration can be discovered from different representations of patent data. For explorative purposes, the hierarchical repositories have been visualized with a three-dimensional hierarchical structure and two-dimensional bar graph structure, which can be used interchangeably for retrieving analogies. This paper demonstrates that the explorative-based computational methodology provides designers an enhanced control over design repositories, empowering them to retrieve analogical inspiration for design-by-analogy practice.","PeriodicalId":138856,"journal":{"name":"Volume 2A: 44th Design Automation Conference","volume":"435 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Approaches for Supporting Exploration for Analogical Inspiration With Behavior, Material and Component Based Structural Representations of Patent Databases\",\"authors\":\"H. Song, Katherine K. Fu\",\"doi\":\"10.1115/DETC2018-85591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an explorative-based computational methodology to aid the analogical retrieval process in design-by-analogy practice. The computational methodology, driven by Non-negative Matrix Factorization (NMF), iteratively builds a hierarchical repositories of design solutions within which clusters of design analogies can be explored by designers. In the work, the methodology has been applied on a large repository of mechanical design related patents, processed to contain only component-, behavior-, or material-based content, to demonstrate that unique and valuable attribute-based analogical inspiration can be discovered from different representations of patent data. For explorative purposes, the hierarchical repositories have been visualized with a three-dimensional hierarchical structure and two-dimensional bar graph structure, which can be used interchangeably for retrieving analogies. This paper demonstrates that the explorative-based computational methodology provides designers an enhanced control over design repositories, empowering them to retrieve analogical inspiration for design-by-analogy practice.\",\"PeriodicalId\":138856,\"journal\":{\"name\":\"Volume 2A: 44th Design Automation Conference\",\"volume\":\"435 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: 44th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2018-85591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 44th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approaches for Supporting Exploration for Analogical Inspiration With Behavior, Material and Component Based Structural Representations of Patent Databases
This paper presents an explorative-based computational methodology to aid the analogical retrieval process in design-by-analogy practice. The computational methodology, driven by Non-negative Matrix Factorization (NMF), iteratively builds a hierarchical repositories of design solutions within which clusters of design analogies can be explored by designers. In the work, the methodology has been applied on a large repository of mechanical design related patents, processed to contain only component-, behavior-, or material-based content, to demonstrate that unique and valuable attribute-based analogical inspiration can be discovered from different representations of patent data. For explorative purposes, the hierarchical repositories have been visualized with a three-dimensional hierarchical structure and two-dimensional bar graph structure, which can be used interchangeably for retrieving analogies. This paper demonstrates that the explorative-based computational methodology provides designers an enhanced control over design repositories, empowering them to retrieve analogical inspiration for design-by-analogy practice.