考虑二维磁性能的高效有限元分析算法

Yingying Yao, C. Koh
{"title":"考虑二维磁性能的高效有限元分析算法","authors":"Yingying Yao, C. Koh","doi":"10.1109/CEFC-06.2006.1632884","DOIUrl":null,"url":null,"abstract":"For taking account of the two-dimensional magnetic properties of grain-oriented electrical steel, the effective anisotropic tensor reluctivity is examined, and a computationally efficient algorithm is suggested by using response surface method (RSM) to smooth the two-dimensional magnetic properties. It is shown that the reconstructed two-dimensional magnetic properties are fairly effective to stabilize the convergence of the Newton-Raphson iteration in the nonlinear magnetic field analysis","PeriodicalId":262549,"journal":{"name":"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation","volume":"504 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computationally Efficient Finite Element Analysis Algorithm Considering Two-Dimensional Magnetic Properties\",\"authors\":\"Yingying Yao, C. Koh\",\"doi\":\"10.1109/CEFC-06.2006.1632884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For taking account of the two-dimensional magnetic properties of grain-oriented electrical steel, the effective anisotropic tensor reluctivity is examined, and a computationally efficient algorithm is suggested by using response surface method (RSM) to smooth the two-dimensional magnetic properties. It is shown that the reconstructed two-dimensional magnetic properties are fairly effective to stabilize the convergence of the Newton-Raphson iteration in the nonlinear magnetic field analysis\",\"PeriodicalId\":262549,\"journal\":{\"name\":\"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation\",\"volume\":\"504 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEFC-06.2006.1632884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEFC-06.2006.1632884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑到晶粒取向电工钢的二维磁性能,研究了有效各向异性张量磁导率,并提出了一种计算效率高的响应面法(RSM)平滑二维磁性能的算法。结果表明,在非线性磁场分析中,重构的二维磁场性质对于稳定牛顿-拉夫森迭代的收敛性是相当有效的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computationally Efficient Finite Element Analysis Algorithm Considering Two-Dimensional Magnetic Properties
For taking account of the two-dimensional magnetic properties of grain-oriented electrical steel, the effective anisotropic tensor reluctivity is examined, and a computationally efficient algorithm is suggested by using response surface method (RSM) to smooth the two-dimensional magnetic properties. It is shown that the reconstructed two-dimensional magnetic properties are fairly effective to stabilize the convergence of the Newton-Raphson iteration in the nonlinear magnetic field analysis
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信