基于功能实体单元的汽车自主导航AI智能体开发

Al-Dakheeli Muhammed, Hadeer Essam, Beshoy Alber, Kirolos Samuel, Hagar Muhammed, M. Wagdy, Nouran Khaled, Hadeer Fawzy, Aya Tarek, Mohamed Abdel Salam, M. El-Kharashi
{"title":"基于功能实体单元的汽车自主导航AI智能体开发","authors":"Al-Dakheeli Muhammed, Hadeer Essam, Beshoy Alber, Kirolos Samuel, Hagar Muhammed, M. Wagdy, Nouran Khaled, Hadeer Fawzy, Aya Tarek, Mohamed Abdel Salam, M. El-Kharashi","doi":"10.1109/icecs53924.2021.9665639","DOIUrl":null,"url":null,"abstract":"In this paper we present our implementation of a Deep Queue Network (DQN) AI Agent model for car autonomous navigation. The agent is capable of lane keeping without making any collisions with the surrounding vehicle and has learnt to move fast and safe in intersections. The model has been trained using two front camera sensors (depth and segmentation) and a collision detector. We also demonstrate how to connect this agent to functional mockup units (FMUs) to simulate the mechatronics part of the car. The deployment of our model has been demonstrated in a CARLA car simulator environment.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing AI Agent with Functional Mockup Units for Car Autonomous Navigation\",\"authors\":\"Al-Dakheeli Muhammed, Hadeer Essam, Beshoy Alber, Kirolos Samuel, Hagar Muhammed, M. Wagdy, Nouran Khaled, Hadeer Fawzy, Aya Tarek, Mohamed Abdel Salam, M. El-Kharashi\",\"doi\":\"10.1109/icecs53924.2021.9665639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present our implementation of a Deep Queue Network (DQN) AI Agent model for car autonomous navigation. The agent is capable of lane keeping without making any collisions with the surrounding vehicle and has learnt to move fast and safe in intersections. The model has been trained using two front camera sensors (depth and segmentation) and a collision detector. We also demonstrate how to connect this agent to functional mockup units (FMUs) to simulate the mechatronics part of the car. The deployment of our model has been demonstrated in a CARLA car simulator environment.\",\"PeriodicalId\":448558,\"journal\":{\"name\":\"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icecs53924.2021.9665639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于汽车自主导航的深度队列网络(DQN)人工智能代理模型的实现。该智能体能够在不与周围车辆发生碰撞的情况下保持车道,并学会了在十字路口快速安全行驶。该模型使用两个前置摄像头传感器(深度和分割)和一个碰撞检测器进行训练。我们还演示了如何将该代理连接到功能模型单元(fmu)以模拟汽车的机电一体化部分。我们的模型的部署已经在CARLA汽车模拟器环境中进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing AI Agent with Functional Mockup Units for Car Autonomous Navigation
In this paper we present our implementation of a Deep Queue Network (DQN) AI Agent model for car autonomous navigation. The agent is capable of lane keeping without making any collisions with the surrounding vehicle and has learnt to move fast and safe in intersections. The model has been trained using two front camera sensors (depth and segmentation) and a collision detector. We also demonstrate how to connect this agent to functional mockup units (FMUs) to simulate the mechatronics part of the car. The deployment of our model has been demonstrated in a CARLA car simulator environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信