混合范数正则化信号分解

Ö. D. Akyildiz, I. Bayram
{"title":"混合范数正则化信号分解","authors":"Ö. D. Akyildiz, I. Bayram","doi":"10.1109/SIU.2012.6204597","DOIUrl":null,"url":null,"abstract":"In this work, we propose an analysis prior based method for decomposition of tonal and transient parts of audio signals. The proposed method uses the diversity of distributions of audio signals in time-frequency representations. Problem is formulated as an inverse problem which is regularized by analysis priors. The approach in this work is an alternative to synthesis prior based methods which are proposed before.","PeriodicalId":256154,"journal":{"name":"2012 20th Signal Processing and Communications Applications Conference (SIU)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Signal decomposition via mixed-norm regularization\",\"authors\":\"Ö. D. Akyildiz, I. Bayram\",\"doi\":\"10.1109/SIU.2012.6204597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose an analysis prior based method for decomposition of tonal and transient parts of audio signals. The proposed method uses the diversity of distributions of audio signals in time-frequency representations. Problem is formulated as an inverse problem which is regularized by analysis priors. The approach in this work is an alternative to synthesis prior based methods which are proposed before.\",\"PeriodicalId\":256154,\"journal\":{\"name\":\"2012 20th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 20th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2012.6204597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2012.6204597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们提出了一种基于分析先验的方法来分解音频信号的音调和瞬态部分。该方法利用了音频信号时频分布的多样性。该问题被表述为一个由分析先验正则化的逆问题。这项工作的方法是一种替代之前提出的基于综合先验的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal decomposition via mixed-norm regularization
In this work, we propose an analysis prior based method for decomposition of tonal and transient parts of audio signals. The proposed method uses the diversity of distributions of audio signals in time-frequency representations. Problem is formulated as an inverse problem which is regularized by analysis priors. The approach in this work is an alternative to synthesis prior based methods which are proposed before.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信