基于图形模型的眼特征点跟踪

S. Coşar, M. Qetin
{"title":"基于图形模型的眼特征点跟踪","authors":"S. Coşar, M. Qetin","doi":"10.1109/SIU.2007.4298738","DOIUrl":null,"url":null,"abstract":"In this paper, a statistical method for eye feature point tracking is proposed. The aim is to track feature points even when the observed data are uncertain because of noise and/or occlusion. With this motivation, a graphical model that uses the spatial information as well as the temporal information between points is built. The proposed method is applied on 2D grayscale real video sequences as a real data application.","PeriodicalId":315147,"journal":{"name":"2007 IEEE 15th Signal Processing and Communications Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eye Feature Point Tracking by Using Graphical Models\",\"authors\":\"S. Coşar, M. Qetin\",\"doi\":\"10.1109/SIU.2007.4298738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a statistical method for eye feature point tracking is proposed. The aim is to track feature points even when the observed data are uncertain because of noise and/or occlusion. With this motivation, a graphical model that uses the spatial information as well as the temporal information between points is built. The proposed method is applied on 2D grayscale real video sequences as a real data application.\",\"PeriodicalId\":315147,\"journal\":{\"name\":\"2007 IEEE 15th Signal Processing and Communications Applications\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 15th Signal Processing and Communications Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2007.4298738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 15th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2007.4298738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种人眼特征点跟踪的统计方法。目标是在观测数据由于噪声和/或遮挡而不确定的情况下跟踪特征点。基于这一动机,构建了一个使用点间空间信息和时间信息的图形模型。将该方法应用于二维灰度真实视频序列,作为实际数据的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eye Feature Point Tracking by Using Graphical Models
In this paper, a statistical method for eye feature point tracking is proposed. The aim is to track feature points even when the observed data are uncertain because of noise and/or occlusion. With this motivation, a graphical model that uses the spatial information as well as the temporal information between points is built. The proposed method is applied on 2D grayscale real video sequences as a real data application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信