{"title":"二维和三维编织复合材料系统的冲击损伤进展","authors":"J. N. Baucom, M. Zikry","doi":"10.1115/imece2001/ad-25307","DOIUrl":null,"url":null,"abstract":"\n The role of fabric architecture on the impact-induced damage progression and perforation resistance of glass-fiber reinforced vinyl-ester resin panels under dynamic loading condition is investigated. Three fabric preforms are considered: a 2-dimensional, plain-woven laminate, a commercially available biaxially reinforced warp-knit, and a 3-dimensional, orthogonally woven preform. Composite samples are subjected to multiple impacts, until perforation, and the impactor position and acceleration are monitored throughout each event, resulting in a visualization of dynamic energy dissipation. Failure modes of the various material systems are characterized. The radial damage expansion was smallest for the 2-d laminate, larger for the biaxially-reinforced warp-knit, and largest for the 3-d orthogonal woven composite. The 3-d composite survived more hits and dissipated more total energy than the other systems. The difference may be due to the additional energy absorption mechanisms, which involve the crimped portion of z-tows in the 3-d composites. This implies that failure may be controlled by manipulation of the properties of the z-tows. It also indicates that the surface condition of 3-d orthogonally woven composites can strongly affect the progression of impact-induced damage.","PeriodicalId":442756,"journal":{"name":"Damage Initiation and Prediction in Composites, Sandwich Structures and Thermal Barrier Coatings","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Impact-Induced Damage Progression in 2-D and 3-D Woven Composite Systems\",\"authors\":\"J. N. Baucom, M. Zikry\",\"doi\":\"10.1115/imece2001/ad-25307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The role of fabric architecture on the impact-induced damage progression and perforation resistance of glass-fiber reinforced vinyl-ester resin panels under dynamic loading condition is investigated. Three fabric preforms are considered: a 2-dimensional, plain-woven laminate, a commercially available biaxially reinforced warp-knit, and a 3-dimensional, orthogonally woven preform. Composite samples are subjected to multiple impacts, until perforation, and the impactor position and acceleration are monitored throughout each event, resulting in a visualization of dynamic energy dissipation. Failure modes of the various material systems are characterized. The radial damage expansion was smallest for the 2-d laminate, larger for the biaxially-reinforced warp-knit, and largest for the 3-d orthogonal woven composite. The 3-d composite survived more hits and dissipated more total energy than the other systems. The difference may be due to the additional energy absorption mechanisms, which involve the crimped portion of z-tows in the 3-d composites. This implies that failure may be controlled by manipulation of the properties of the z-tows. It also indicates that the surface condition of 3-d orthogonally woven composites can strongly affect the progression of impact-induced damage.\",\"PeriodicalId\":442756,\"journal\":{\"name\":\"Damage Initiation and Prediction in Composites, Sandwich Structures and Thermal Barrier Coatings\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Damage Initiation and Prediction in Composites, Sandwich Structures and Thermal Barrier Coatings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/ad-25307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Damage Initiation and Prediction in Composites, Sandwich Structures and Thermal Barrier Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/ad-25307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact-Induced Damage Progression in 2-D and 3-D Woven Composite Systems
The role of fabric architecture on the impact-induced damage progression and perforation resistance of glass-fiber reinforced vinyl-ester resin panels under dynamic loading condition is investigated. Three fabric preforms are considered: a 2-dimensional, plain-woven laminate, a commercially available biaxially reinforced warp-knit, and a 3-dimensional, orthogonally woven preform. Composite samples are subjected to multiple impacts, until perforation, and the impactor position and acceleration are monitored throughout each event, resulting in a visualization of dynamic energy dissipation. Failure modes of the various material systems are characterized. The radial damage expansion was smallest for the 2-d laminate, larger for the biaxially-reinforced warp-knit, and largest for the 3-d orthogonal woven composite. The 3-d composite survived more hits and dissipated more total energy than the other systems. The difference may be due to the additional energy absorption mechanisms, which involve the crimped portion of z-tows in the 3-d composites. This implies that failure may be controlled by manipulation of the properties of the z-tows. It also indicates that the surface condition of 3-d orthogonally woven composites can strongly affect the progression of impact-induced damage.