W. S. Oliveira, Ing Ren Tsang, George D. C. Cavalcanti
{"title":"一种基于组合滤波器的视网膜血管无监督分割方法","authors":"W. S. Oliveira, Ing Ren Tsang, George D. C. Cavalcanti","doi":"10.1109/ICTAI.2012.106","DOIUrl":null,"url":null,"abstract":"Image segmentation of retinal blood vessels is an important procedure for the prediction and diagnosis of cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels appearance. This work develops an unsupervised segmentation procedure for the segmentation of retinal vessels images using a combined matched filter, Frangi filter and Gabor Wavelet Filter. After the vessel enhancement, two segmentation methods are tested. The first method uses an approach based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The results are compared to other state-of-the-art methods described in the literature.","PeriodicalId":155588,"journal":{"name":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An Unsupervised Segmentation Method for Retinal Vessel Using Combined Filters\",\"authors\":\"W. S. Oliveira, Ing Ren Tsang, George D. C. Cavalcanti\",\"doi\":\"10.1109/ICTAI.2012.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation of retinal blood vessels is an important procedure for the prediction and diagnosis of cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels appearance. This work develops an unsupervised segmentation procedure for the segmentation of retinal vessels images using a combined matched filter, Frangi filter and Gabor Wavelet Filter. After the vessel enhancement, two segmentation methods are tested. The first method uses an approach based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The results are compared to other state-of-the-art methods described in the literature.\",\"PeriodicalId\":155588,\"journal\":{\"name\":\"2012 IEEE 24th International Conference on Tools with Artificial Intelligence\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 24th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2012.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2012.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Unsupervised Segmentation Method for Retinal Vessel Using Combined Filters
Image segmentation of retinal blood vessels is an important procedure for the prediction and diagnosis of cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels appearance. This work develops an unsupervised segmentation procedure for the segmentation of retinal vessels images using a combined matched filter, Frangi filter and Gabor Wavelet Filter. After the vessel enhancement, two segmentation methods are tested. The first method uses an approach based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The results are compared to other state-of-the-art methods described in the literature.