基于脑电信号的患者感知自适应脑图癫痫发作预测算法

Hussein Alawieh, H. Hammoud, Mortada Haidar, M. Nassralla, Ahmad M. El-Hajj, Z. Dawy
{"title":"基于脑电信号的患者感知自适应脑图癫痫发作预测算法","authors":"Hussein Alawieh, H. Hammoud, Mortada Haidar, M. Nassralla, Ahmad M. El-Hajj, Z. Dawy","doi":"10.1109/HealthCom.2016.7749471","DOIUrl":null,"url":null,"abstract":"This work proposes a novel patient-aware approach that utilizes an n-gram based pattern recognition algorithm to analyze scalp electroencephalogram (EEG) data and predict epileptic seizures. The method addresses the major challenge of extracting distinctive features from EEG signals through a detection of spatio-temporal signatures related to neurological events. By counting the number of occurrences of amplitude patterns with predefined lengths, the algorithm generates a probabilistic measure (anomalies ratio) that is used as a prediction marker. These extracted ratios are classified using state of the art machine learning algorithms into seizure and non-seizure windows. The efficacy of the prediction model is tested on patient records from the Freiburg database with more than 100 hours of recordings per patient and for a total of 145 seizures. The proposed algorithm is further optimized to obtain the n-gram parameters for enhanced feature extraction. Results demonstrate an average accuracy of 93.83%, sensitivity of 96.12%, and false alarm rate of 8.44%.","PeriodicalId":167022,"journal":{"name":"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Patient-aware adaptive ngram-based algorithm for epileptic seizure prediction using EEG signals\",\"authors\":\"Hussein Alawieh, H. Hammoud, Mortada Haidar, M. Nassralla, Ahmad M. El-Hajj, Z. Dawy\",\"doi\":\"10.1109/HealthCom.2016.7749471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a novel patient-aware approach that utilizes an n-gram based pattern recognition algorithm to analyze scalp electroencephalogram (EEG) data and predict epileptic seizures. The method addresses the major challenge of extracting distinctive features from EEG signals through a detection of spatio-temporal signatures related to neurological events. By counting the number of occurrences of amplitude patterns with predefined lengths, the algorithm generates a probabilistic measure (anomalies ratio) that is used as a prediction marker. These extracted ratios are classified using state of the art machine learning algorithms into seizure and non-seizure windows. The efficacy of the prediction model is tested on patient records from the Freiburg database with more than 100 hours of recordings per patient and for a total of 145 seizures. The proposed algorithm is further optimized to obtain the n-gram parameters for enhanced feature extraction. Results demonstrate an average accuracy of 93.83%, sensitivity of 96.12%, and false alarm rate of 8.44%.\",\"PeriodicalId\":167022,\"journal\":{\"name\":\"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HealthCom.2016.7749471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2016.7749471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

这项工作提出了一种新的患者感知方法,该方法利用基于n图的模式识别算法来分析头皮脑电图(EEG)数据并预测癫痫发作。该方法通过检测与神经事件相关的时空特征,解决了从脑电图信号中提取显著特征的主要挑战。通过计算具有预定义长度的振幅模式的出现次数,该算法生成一个用作预测标记的概率度量(异常比率)。这些提取的比率使用最先进的机器学习算法分为癫痫发作和非癫痫发作窗口。预测模型的有效性在Freiburg数据库的患者记录上进行了测试,每个患者的记录超过100小时,总共有145次癫痫发作。进一步优化算法,得到n-gram参数,增强特征提取。结果表明,平均准确率为93.83%,灵敏度为96.12%,虚警率为8.44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patient-aware adaptive ngram-based algorithm for epileptic seizure prediction using EEG signals
This work proposes a novel patient-aware approach that utilizes an n-gram based pattern recognition algorithm to analyze scalp electroencephalogram (EEG) data and predict epileptic seizures. The method addresses the major challenge of extracting distinctive features from EEG signals through a detection of spatio-temporal signatures related to neurological events. By counting the number of occurrences of amplitude patterns with predefined lengths, the algorithm generates a probabilistic measure (anomalies ratio) that is used as a prediction marker. These extracted ratios are classified using state of the art machine learning algorithms into seizure and non-seizure windows. The efficacy of the prediction model is tested on patient records from the Freiburg database with more than 100 hours of recordings per patient and for a total of 145 seizures. The proposed algorithm is further optimized to obtain the n-gram parameters for enhanced feature extraction. Results demonstrate an average accuracy of 93.83%, sensitivity of 96.12%, and false alarm rate of 8.44%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信