用多模态传感器数据识别睡眠依赖记忆巩固

A. Sano, Rosalind W. Picard
{"title":"用多模态传感器数据识别睡眠依赖记忆巩固","authors":"A. Sano, Rosalind W. Picard","doi":"10.1109/BSN.2013.6575479","DOIUrl":null,"url":null,"abstract":"This paper presents the possibility of recognizing sleep dependent memory consolidation using multi-modal sensor data. We collected visual discrimination task (VDT) performance before and after sleep at laboratory, hospital and home for N=24 participants while recording EEG (electroencepharogram), EDA (electrodermal activity) and ACC (accelerometer) or actigraphy data during sleep. We extracted features and applied machine learning techniques (discriminant analysis, support vector machine and k-nearest neighbor) from the sleep data to classify whether the participants showed improvement in the memory task. Our results showed 60–70% accuracy in a binary classification of task performance using EDA or EDA+ACC features, which provided an improvement over the more traditional use of sleep stages (the percentages of slow wave sleep (SWS) in the 1st quarter and rapid eye movement (REM) in the 4th quarter of the night) to predict VDT improvement.","PeriodicalId":138242,"journal":{"name":"2013 IEEE International Conference on Body Sensor Networks","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Recognition of sleep dependent memory consolidation with multi-modal sensor data\",\"authors\":\"A. Sano, Rosalind W. Picard\",\"doi\":\"10.1109/BSN.2013.6575479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the possibility of recognizing sleep dependent memory consolidation using multi-modal sensor data. We collected visual discrimination task (VDT) performance before and after sleep at laboratory, hospital and home for N=24 participants while recording EEG (electroencepharogram), EDA (electrodermal activity) and ACC (accelerometer) or actigraphy data during sleep. We extracted features and applied machine learning techniques (discriminant analysis, support vector machine and k-nearest neighbor) from the sleep data to classify whether the participants showed improvement in the memory task. Our results showed 60–70% accuracy in a binary classification of task performance using EDA or EDA+ACC features, which provided an improvement over the more traditional use of sleep stages (the percentages of slow wave sleep (SWS) in the 1st quarter and rapid eye movement (REM) in the 4th quarter of the night) to predict VDT improvement.\",\"PeriodicalId\":138242,\"journal\":{\"name\":\"2013 IEEE International Conference on Body Sensor Networks\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2013.6575479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2013.6575479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了利用多模态传感器数据识别睡眠依赖记忆巩固的可能性。我们在实验室、医院和家中收集了24名参与者睡眠前后的视觉辨别任务(VDT)表现,并记录了睡眠期间的EEG(脑电图)、EDA(皮肤电活动)和ACC(加速度计)或活动记录仪数据。我们从睡眠数据中提取特征并应用机器学习技术(判别分析、支持向量机和k近邻)来分类参与者是否在记忆任务中表现出改善。我们的研究结果显示,使用EDA或EDA+ACC特征对任务表现进行二元分类的准确率为60-70%,这比更传统的使用睡眠阶段(第一季度慢波睡眠(SWS)和第四季度快速眼动(REM)的百分比)来预测VDT改善提供了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of sleep dependent memory consolidation with multi-modal sensor data
This paper presents the possibility of recognizing sleep dependent memory consolidation using multi-modal sensor data. We collected visual discrimination task (VDT) performance before and after sleep at laboratory, hospital and home for N=24 participants while recording EEG (electroencepharogram), EDA (electrodermal activity) and ACC (accelerometer) or actigraphy data during sleep. We extracted features and applied machine learning techniques (discriminant analysis, support vector machine and k-nearest neighbor) from the sleep data to classify whether the participants showed improvement in the memory task. Our results showed 60–70% accuracy in a binary classification of task performance using EDA or EDA+ACC features, which provided an improvement over the more traditional use of sleep stages (the percentages of slow wave sleep (SWS) in the 1st quarter and rapid eye movement (REM) in the 4th quarter of the night) to predict VDT improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信