主题分割算法评价中的定量分析

Maria Georgescul, Alexander Clark, S. Armstrong
{"title":"主题分割算法评价中的定量分析","authors":"Maria Georgescul, Alexander Clark, S. Armstrong","doi":"10.3115/1654595.1654622","DOIUrl":null,"url":null,"abstract":"We consider here the task of linear the-matic segmentation of text documents, by using features based on word distributions in the text. For this task, a typical and often implicit assumption in previous studies is that a document has just one topic and therefore many algorithms have been tested and have shown encouraging results on artificial data sets, generated by putting together parts of different documents. We show that evaluation on synthetic data is potentially misleading and fails to give an accurate evaluation of the performance on real data. Moreover, we provide a critical review of existing evaluation metrics in the literature and we propose an improved evaluation metric.","PeriodicalId":426429,"journal":{"name":"SIGDIAL Workshop","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"An Analysis of Quantitative Aspects in the Evaluation of Thematic Segmentation Algorithms\",\"authors\":\"Maria Georgescul, Alexander Clark, S. Armstrong\",\"doi\":\"10.3115/1654595.1654622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider here the task of linear the-matic segmentation of text documents, by using features based on word distributions in the text. For this task, a typical and often implicit assumption in previous studies is that a document has just one topic and therefore many algorithms have been tested and have shown encouraging results on artificial data sets, generated by putting together parts of different documents. We show that evaluation on synthetic data is potentially misleading and fails to give an accurate evaluation of the performance on real data. Moreover, we provide a critical review of existing evaluation metrics in the literature and we propose an improved evaluation metric.\",\"PeriodicalId\":426429,\"journal\":{\"name\":\"SIGDIAL Workshop\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGDIAL Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1654595.1654622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGDIAL Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1654595.1654622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

我们在这里考虑使用基于文本中单词分布的特征对文本文档进行线性自动分割的任务。对于这项任务,以前的研究中一个典型且通常隐含的假设是,一个文档只有一个主题,因此已经测试了许多算法,并在人工数据集上显示了令人鼓舞的结果,这些数据集是通过将不同文档的部分放在一起生成的。我们表明,对合成数据的评价具有潜在的误导性,并且无法对真实数据的性能给出准确的评价。此外,我们对文献中现有的评估指标进行了批判性的回顾,并提出了一种改进的评估指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Analysis of Quantitative Aspects in the Evaluation of Thematic Segmentation Algorithms
We consider here the task of linear the-matic segmentation of text documents, by using features based on word distributions in the text. For this task, a typical and often implicit assumption in previous studies is that a document has just one topic and therefore many algorithms have been tested and have shown encouraging results on artificial data sets, generated by putting together parts of different documents. We show that evaluation on synthetic data is potentially misleading and fails to give an accurate evaluation of the performance on real data. Moreover, we provide a critical review of existing evaluation metrics in the literature and we propose an improved evaluation metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信