领域知识与决策时间:软计算应用的框架

P. Bonissone
{"title":"领域知识与决策时间:软计算应用的框架","authors":"P. Bonissone","doi":"10.1109/ISEFS.2006.251159","DOIUrl":null,"url":null,"abstract":"We analyze the issue of decision-making using soft computing (SC) models. We define a natural framework in the cross product of the decision's time horizon and the type of domain knowledge used by the SC models. Within this framework, we analyze the progression from simple lexicon to annotated lexicon, morphology, syntax, semantics, and pragmatics. We compare this progression with the injection of domain knowledge in SC to perform tasks in the context of prognostics & health management (PHM), such as anomaly detection and identification (unsupervised clustering), failure mode analysis (supervised learning), prognostics of remaining useful life (prediction), on-board fault accommodation (realtime control), and off board logistics actions (decision support). Finally, we analyze evolutionary fuzzy systems (EFS) and determine their position and role in this framework","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Domain Knowledge and Decision Time: A Framework for Soft Computing Applications\",\"authors\":\"P. Bonissone\",\"doi\":\"10.1109/ISEFS.2006.251159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the issue of decision-making using soft computing (SC) models. We define a natural framework in the cross product of the decision's time horizon and the type of domain knowledge used by the SC models. Within this framework, we analyze the progression from simple lexicon to annotated lexicon, morphology, syntax, semantics, and pragmatics. We compare this progression with the injection of domain knowledge in SC to perform tasks in the context of prognostics & health management (PHM), such as anomaly detection and identification (unsupervised clustering), failure mode analysis (supervised learning), prognostics of remaining useful life (prediction), on-board fault accommodation (realtime control), and off board logistics actions (decision support). Finally, we analyze evolutionary fuzzy systems (EFS) and determine their position and role in this framework\",\"PeriodicalId\":269492,\"journal\":{\"name\":\"2006 International Symposium on Evolving Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Symposium on Evolving Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEFS.2006.251159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们使用软计算(SC)模型来分析决策问题。我们在决策的时间范围和SC模型使用的领域知识类型的交叉积中定义了一个自然框架。在这个框架内,我们分析了从简单词汇到注释词汇、词法、句法、语义和语用的进展。我们将这一进展与在SC中注入领域知识以执行预测和健康管理(PHM)背景下的任务进行比较,例如异常检测和识别(无监督聚类)、故障模式分析(监督学习)、剩余使用寿命预测(预测)、船上故障调节(实时控制)和船上后勤行动(决策支持)。最后,我们分析了进化模糊系统(EFS),并确定了它们在这个框架中的位置和作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain Knowledge and Decision Time: A Framework for Soft Computing Applications
We analyze the issue of decision-making using soft computing (SC) models. We define a natural framework in the cross product of the decision's time horizon and the type of domain knowledge used by the SC models. Within this framework, we analyze the progression from simple lexicon to annotated lexicon, morphology, syntax, semantics, and pragmatics. We compare this progression with the injection of domain knowledge in SC to perform tasks in the context of prognostics & health management (PHM), such as anomaly detection and identification (unsupervised clustering), failure mode analysis (supervised learning), prognostics of remaining useful life (prediction), on-board fault accommodation (realtime control), and off board logistics actions (decision support). Finally, we analyze evolutionary fuzzy systems (EFS) and determine their position and role in this framework
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信