星形球积的紧化

Behrang Forghani, Keivan Mallahi-Karai
{"title":"星形球积的紧化","authors":"Behrang Forghani, Keivan Mallahi-Karai","doi":"10.4171/LEM/1025","DOIUrl":null,"url":null,"abstract":". We define and study a new compactification, called the height compactification of the horospheric product of two infinite trees. We will provide a complete description of this compactification. In particular, we show that this compactification is isomorphic to the Busemann compactification when all the vertices of both trees have degree at least three, which also leads to a precise description of the Busemann functions in terms of the points in the geometric compactification of each tree. We will discuss an application to the asymptotic behavior of integrable ergodic cocycles with values in the isometry group of such horospheric product.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compactifications of horospheric products\",\"authors\":\"Behrang Forghani, Keivan Mallahi-Karai\",\"doi\":\"10.4171/LEM/1025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We define and study a new compactification, called the height compactification of the horospheric product of two infinite trees. We will provide a complete description of this compactification. In particular, we show that this compactification is isomorphic to the Busemann compactification when all the vertices of both trees have degree at least three, which also leads to a precise description of the Busemann functions in terms of the points in the geometric compactification of each tree. We will discuss an application to the asymptotic behavior of integrable ergodic cocycles with values in the isometry group of such horospheric product.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/LEM/1025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/1025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 我们定义并研究了一种新的紧化,称为两无限树的平流层积的高度紧化。我们将提供这种紧化的完整描述。特别是,当两棵树的所有顶点都至少具有3度时,我们证明了这种紧化与Busemann紧化是同构的,这也导致了用每棵树的几何紧化中的点来精确描述Busemann函数。我们将讨论在这类平流层积的等距群中有值的可积遍历环的渐近性的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compactifications of horospheric products
. We define and study a new compactification, called the height compactification of the horospheric product of two infinite trees. We will provide a complete description of this compactification. In particular, we show that this compactification is isomorphic to the Busemann compactification when all the vertices of both trees have degree at least three, which also leads to a precise description of the Busemann functions in terms of the points in the geometric compactification of each tree. We will discuss an application to the asymptotic behavior of integrable ergodic cocycles with values in the isometry group of such horospheric product.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信