{"title":"星形球积的紧化","authors":"Behrang Forghani, Keivan Mallahi-Karai","doi":"10.4171/LEM/1025","DOIUrl":null,"url":null,"abstract":". We define and study a new compactification, called the height compactification of the horospheric product of two infinite trees. We will provide a complete description of this compactification. In particular, we show that this compactification is isomorphic to the Busemann compactification when all the vertices of both trees have degree at least three, which also leads to a precise description of the Busemann functions in terms of the points in the geometric compactification of each tree. We will discuss an application to the asymptotic behavior of integrable ergodic cocycles with values in the isometry group of such horospheric product.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compactifications of horospheric products\",\"authors\":\"Behrang Forghani, Keivan Mallahi-Karai\",\"doi\":\"10.4171/LEM/1025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We define and study a new compactification, called the height compactification of the horospheric product of two infinite trees. We will provide a complete description of this compactification. In particular, we show that this compactification is isomorphic to the Busemann compactification when all the vertices of both trees have degree at least three, which also leads to a precise description of the Busemann functions in terms of the points in the geometric compactification of each tree. We will discuss an application to the asymptotic behavior of integrable ergodic cocycles with values in the isometry group of such horospheric product.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/LEM/1025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/1025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
. We define and study a new compactification, called the height compactification of the horospheric product of two infinite trees. We will provide a complete description of this compactification. In particular, we show that this compactification is isomorphic to the Busemann compactification when all the vertices of both trees have degree at least three, which also leads to a precise description of the Busemann functions in terms of the points in the geometric compactification of each tree. We will discuss an application to the asymptotic behavior of integrable ergodic cocycles with values in the isometry group of such horospheric product.