归纳逻辑中的类比推理问题

Simon M. Huttegger
{"title":"归纳逻辑中的类比推理问题","authors":"Simon M. Huttegger","doi":"10.4204/EPTCS.215.1","DOIUrl":null,"url":null,"abstract":"We consider one problem that was largely left open by Rudolf Carnap in his work on inductive logic, the problem of analogical inference. After discussing some previous attempts to solve this problem, we propose a new solution that is based on the ideas of Bruno de Finetti on probabilistic symmetries. We explain how our new inductive logic can be developed within the Carnapian paradigm of inductive logic-deriving an inductive rule from a set of simple postulates about the observational process-and discuss some of its properties.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Problem of Analogical Inference in Inductive Logic\",\"authors\":\"Simon M. Huttegger\",\"doi\":\"10.4204/EPTCS.215.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider one problem that was largely left open by Rudolf Carnap in his work on inductive logic, the problem of analogical inference. After discussing some previous attempts to solve this problem, we propose a new solution that is based on the ideas of Bruno de Finetti on probabilistic symmetries. We explain how our new inductive logic can be developed within the Carnapian paradigm of inductive logic-deriving an inductive rule from a set of simple postulates about the observational process-and discuss some of its properties.\",\"PeriodicalId\":118894,\"journal\":{\"name\":\"Theoretical Aspects of Rationality and Knowledge\",\"volume\":\"180 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Aspects of Rationality and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.215.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Aspects of Rationality and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.215.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑一个鲁道夫·卡尔纳普在归纳逻辑研究中留下的问题,类比推理问题。在讨论了以前解决这个问题的一些尝试之后,我们提出了一个基于Bruno de Finetti关于概率对称性的思想的新解决方案。我们解释了我们的新归纳逻辑是如何在归纳逻辑的Carnapian范式中发展的——从一组关于观察过程的简单假设中推导出归纳规则——并讨论了它的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Problem of Analogical Inference in Inductive Logic
We consider one problem that was largely left open by Rudolf Carnap in his work on inductive logic, the problem of analogical inference. After discussing some previous attempts to solve this problem, we propose a new solution that is based on the ideas of Bruno de Finetti on probabilistic symmetries. We explain how our new inductive logic can be developed within the Carnapian paradigm of inductive logic-deriving an inductive rule from a set of simple postulates about the observational process-and discuss some of its properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信