使用机器学习方法检测Microsoft Windows系统日志中的网络异常

A. Pavlychev, K. S. Soldatov, V. A. Skazin
{"title":"使用机器学习方法检测Microsoft Windows系统日志中的网络异常","authors":"A. Pavlychev, K. S. Soldatov, V. A. Skazin","doi":"10.21293/1818-0442-2021-24-4-27-32","DOIUrl":null,"url":null,"abstract":"An algorithm for network anomaly detection in the system security logs of the Microsoft Windows operating system with using machine learning methods was developed. Preprocessing, clustering, and visualization of the studied data were carried out. The proposed algorithm has confirmed its efficiency by identifying events in the studied dataset that indicate the operation of a malicious software.","PeriodicalId":273068,"journal":{"name":"Proceedings of Tomsk State University of Control Systems and Radioelectronics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network anomaly detection in the Microsoft Windows system logs using machine learning methods\",\"authors\":\"A. Pavlychev, K. S. Soldatov, V. A. Skazin\",\"doi\":\"10.21293/1818-0442-2021-24-4-27-32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm for network anomaly detection in the system security logs of the Microsoft Windows operating system with using machine learning methods was developed. Preprocessing, clustering, and visualization of the studied data were carried out. The proposed algorithm has confirmed its efficiency by identifying events in the studied dataset that indicate the operation of a malicious software.\",\"PeriodicalId\":273068,\"journal\":{\"name\":\"Proceedings of Tomsk State University of Control Systems and Radioelectronics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Tomsk State University of Control Systems and Radioelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21293/1818-0442-2021-24-4-27-32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tomsk State University of Control Systems and Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21293/1818-0442-2021-24-4-27-32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于机器学习方法的微软Windows操作系统安全日志网络异常检测算法。对研究数据进行预处理、聚类和可视化。通过识别研究数据集中表明恶意软件运行的事件,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network anomaly detection in the Microsoft Windows system logs using machine learning methods
An algorithm for network anomaly detection in the system security logs of the Microsoft Windows operating system with using machine learning methods was developed. Preprocessing, clustering, and visualization of the studied data were carried out. The proposed algorithm has confirmed its efficiency by identifying events in the studied dataset that indicate the operation of a malicious software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信