通过端到端侧信息学习减少压缩伪影

Haichuan Ma, Dong Liu, Feng Wu
{"title":"通过端到端侧信息学习减少压缩伪影","authors":"Haichuan Ma, Dong Liu, Feng Wu","doi":"10.1109/VCIP49819.2020.9301805","DOIUrl":null,"url":null,"abstract":"We propose to improve neural network-based compression artifact reduction by transmitting side information for the neural network. The side information consists of artifact descriptors that are obtained by analyzing the original and compressed images in the encoder. In the decoder, the received descriptors are used as additional input to a well-designed conditional post-processing neural network. To reduce the transmission overhead, the entire model is optimized under the rate-distortion constraint via end-to-end learning. Experimental results show that introducing the side information greatly improves the ability of the post-processing neural network, and improves the rate-distortion performance.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improving Compression Artifact Reduction via End-to-End Learning of Side Information\",\"authors\":\"Haichuan Ma, Dong Liu, Feng Wu\",\"doi\":\"10.1109/VCIP49819.2020.9301805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose to improve neural network-based compression artifact reduction by transmitting side information for the neural network. The side information consists of artifact descriptors that are obtained by analyzing the original and compressed images in the encoder. In the decoder, the received descriptors are used as additional input to a well-designed conditional post-processing neural network. To reduce the transmission overhead, the entire model is optimized under the rate-distortion constraint via end-to-end learning. Experimental results show that introducing the side information greatly improves the ability of the post-processing neural network, and improves the rate-distortion performance.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出通过传递神经网络的侧信息来改进基于神经网络的压缩伪影减少。副信息由通过分析编码器中的原始图像和压缩图像获得的工件描述符组成。在解码器中,接收到的描述符被用作一个精心设计的条件后处理神经网络的附加输入。为了减少传输开销,在速率失真约束下,通过端到端学习对整个模型进行优化。实验结果表明,引入侧信息大大提高了神经网络的后处理能力,提高了率失真性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Compression Artifact Reduction via End-to-End Learning of Side Information
We propose to improve neural network-based compression artifact reduction by transmitting side information for the neural network. The side information consists of artifact descriptors that are obtained by analyzing the original and compressed images in the encoder. In the decoder, the received descriptors are used as additional input to a well-designed conditional post-processing neural network. To reduce the transmission overhead, the entire model is optimized under the rate-distortion constraint via end-to-end learning. Experimental results show that introducing the side information greatly improves the ability of the post-processing neural network, and improves the rate-distortion performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信