基于参考关系的法律文本聚类

Biao Fan, Tao Liu, H. Hu, Xiaoyong Du
{"title":"基于参考关系的法律文本聚类","authors":"Biao Fan, Tao Liu, H. Hu, Xiaoyong Du","doi":"10.1109/ChinaGrid.2010.22","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method to cluster law texts based on referential relation of laws. We extract law entities (an entity represents a law) and their referential relation from law texts. Then SimRank algorithm is applied to calculate law entity’s similarity through referential relation and law clustering is carried out based on the SimRank similarity. This is the first time to apply SimRank algorithm in the domain of Law and use it to carry out text clustering. Prototype and experiments show that our solution is feasible. We also publish the extracted data as Linked Law Data with RDF data model, which forms the first open semantic web database in Law domain. Linked Law Data enables user to access law data with rich data links and query web data by application interface of Semantic Web.","PeriodicalId":429657,"journal":{"name":"2010 Fifth Annual ChinaGrid Conference","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Law Text Clustering Based on Referential Relations\",\"authors\":\"Biao Fan, Tao Liu, H. Hu, Xiaoyong Du\",\"doi\":\"10.1109/ChinaGrid.2010.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new method to cluster law texts based on referential relation of laws. We extract law entities (an entity represents a law) and their referential relation from law texts. Then SimRank algorithm is applied to calculate law entity’s similarity through referential relation and law clustering is carried out based on the SimRank similarity. This is the first time to apply SimRank algorithm in the domain of Law and use it to carry out text clustering. Prototype and experiments show that our solution is feasible. We also publish the extracted data as Linked Law Data with RDF data model, which forms the first open semantic web database in Law domain. Linked Law Data enables user to access law data with rich data links and query web data by application interface of Semantic Web.\",\"PeriodicalId\":429657,\"journal\":{\"name\":\"2010 Fifth Annual ChinaGrid Conference\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Fifth Annual ChinaGrid Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaGrid.2010.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fifth Annual ChinaGrid Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaGrid.2010.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于法律参考关系的法律文本聚类方法。我们从法律文本中提取法律实体(一个实体代表一部法律)及其指称关系。然后应用simmrank算法通过引用关系计算法律实体的相似度,并基于simmrank相似度进行法律聚类。这是第一次将simmrank算法应用到法学领域,并用它来进行文本聚类。样机和实验表明,该方案是可行的。并采用RDF数据模型将提取的数据发布为关联法律数据,形成了法律领域第一个开放的语义web数据库。关联法律数据使用户能够通过丰富的数据链接访问法律数据,并通过语义web的应用界面查询web数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Law Text Clustering Based on Referential Relations
This paper proposes a new method to cluster law texts based on referential relation of laws. We extract law entities (an entity represents a law) and their referential relation from law texts. Then SimRank algorithm is applied to calculate law entity’s similarity through referential relation and law clustering is carried out based on the SimRank similarity. This is the first time to apply SimRank algorithm in the domain of Law and use it to carry out text clustering. Prototype and experiments show that our solution is feasible. We also publish the extracted data as Linked Law Data with RDF data model, which forms the first open semantic web database in Law domain. Linked Law Data enables user to access law data with rich data links and query web data by application interface of Semantic Web.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信