变输入迟滞神经网络的指数稳定性

G. Padmavathi, P. V. S. Kumar
{"title":"变输入迟滞神经网络的指数稳定性","authors":"G. Padmavathi, P. V. S. Kumar","doi":"10.1109/ISDA.2012.6416580","DOIUrl":null,"url":null,"abstract":"In this paper mathematical analysis of hysteresis neural network with varying inputs are proposed. Motivated by the application potential of the model we focus on existence, exponential stability and asymptotic equivalence of the networks. We establish sufficient conditions for exponential stability of this class of neural networks and this result can be applied through numerical example. The result improves the earlier publications due to the state convergence of the networks with neutral delays and varying inputs.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exponential stability of hysteresis neural networks with varying inputs\",\"authors\":\"G. Padmavathi, P. V. S. Kumar\",\"doi\":\"10.1109/ISDA.2012.6416580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper mathematical analysis of hysteresis neural network with varying inputs are proposed. Motivated by the application potential of the model we focus on existence, exponential stability and asymptotic equivalence of the networks. We establish sufficient conditions for exponential stability of this class of neural networks and this result can be applied through numerical example. The result improves the earlier publications due to the state convergence of the networks with neutral delays and varying inputs.\",\"PeriodicalId\":370150,\"journal\":{\"name\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2012.6416580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对变输入条件下的滞后神经网络进行了数学分析。由于该模型的应用潜力,我们重点研究了网络的存在性、指数稳定性和渐近等价性。给出了这类神经网络指数稳定的充分条件,并通过数值算例加以应用。由于具有中立延迟和不同输入的网络的状态收敛性,该结果改进了先前的出版物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential stability of hysteresis neural networks with varying inputs
In this paper mathematical analysis of hysteresis neural network with varying inputs are proposed. Motivated by the application potential of the model we focus on existence, exponential stability and asymptotic equivalence of the networks. We establish sufficient conditions for exponential stability of this class of neural networks and this result can be applied through numerical example. The result improves the earlier publications due to the state convergence of the networks with neutral delays and varying inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信