大窗口二值滤波估计

E. Dougherty
{"title":"大窗口二值滤波估计","authors":"E. Dougherty","doi":"10.1109/SIBGRA.1998.722728","DOIUrl":null,"url":null,"abstract":"Optimal filters are characterized by parameters based on image and filter structure and these parameters need to be estimated from realizations. For fully optimal mean-absolute-error binary filters, conditional expectations need to be estimated. Owing to lack of estimation precision, the resulting estimated filter is likely to be suboptimal. The estimation dilemma can be mitigated by using a constrained filter requiring less parameters. This paper examines the relationship between estimation precision and constraint. It focuses on binary filters, relevant Chebyshev bounds, and the relationships between the kernels of optimal, constrained, and estimated filters. It describes constraint via iterative design and secondarily constrained filters, as well as using suboptimal filters as prior filters for the estimation of optimal filters using new data.","PeriodicalId":282177,"journal":{"name":"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Binary filter estimation for large windows\",\"authors\":\"E. Dougherty\",\"doi\":\"10.1109/SIBGRA.1998.722728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal filters are characterized by parameters based on image and filter structure and these parameters need to be estimated from realizations. For fully optimal mean-absolute-error binary filters, conditional expectations need to be estimated. Owing to lack of estimation precision, the resulting estimated filter is likely to be suboptimal. The estimation dilemma can be mitigated by using a constrained filter requiring less parameters. This paper examines the relationship between estimation precision and constraint. It focuses on binary filters, relevant Chebyshev bounds, and the relationships between the kernels of optimal, constrained, and estimated filters. It describes constraint via iterative design and secondarily constrained filters, as well as using suboptimal filters as prior filters for the estimation of optimal filters using new data.\",\"PeriodicalId\":282177,\"journal\":{\"name\":\"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRA.1998.722728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRA.1998.722728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

最优滤波器的特征是基于图像和滤波器结构的参数,这些参数需要从实现中估计。对于完全最优的平均-绝对误差二值滤波器,需要估计条件期望。由于缺乏估计精度,所得到的估计滤波器很可能不是最优的。可以通过使用需要较少参数的约束过滤器来缓解估计困境。本文研究了估计精度与约束之间的关系。它侧重于二进制滤波器,相关的切比雪夫界,以及最优,约束和估计滤波器的核之间的关系。它通过迭代设计和次级约束滤波器来描述约束,以及使用次优滤波器作为使用新数据估计最优滤波器的先验滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binary filter estimation for large windows
Optimal filters are characterized by parameters based on image and filter structure and these parameters need to be estimated from realizations. For fully optimal mean-absolute-error binary filters, conditional expectations need to be estimated. Owing to lack of estimation precision, the resulting estimated filter is likely to be suboptimal. The estimation dilemma can be mitigated by using a constrained filter requiring less parameters. This paper examines the relationship between estimation precision and constraint. It focuses on binary filters, relevant Chebyshev bounds, and the relationships between the kernels of optimal, constrained, and estimated filters. It describes constraint via iterative design and secondarily constrained filters, as well as using suboptimal filters as prior filters for the estimation of optimal filters using new data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信